若XY=XZ,则Y=Z;
若XY=XZ,则Y=Z;
函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
设z=ln(xy), 则dz=().
设z=ln(xy), 则dz=().
下列选型中的逻辑式等价于“xy+yz+xz”的是:( )。 A: x(y⊕z) + yz B: xy + yz C: yz + xz D: xy + xz
下列选型中的逻辑式等价于“xy+yz+xz”的是:( )。 A: x(y⊕z) + yz B: xy + yz C: yz + xz D: xy + xz
设方程\(\sin z - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \( { { xz} \over {xy+cos z }}\) B: \(- { { xz} \over {xy+cos z }}\) C: \(- { { xz} \over {\cos z - xy}}\) D: \( { { xz} \over {\cos z - xy}}\)
设方程\(\sin z - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \( { { xz} \over {xy+cos z }}\) B: \(- { { xz} \over {xy+cos z }}\) C: \(- { { xz} \over {\cos z - xy}}\) D: \( { { xz} \over {\cos z - xy}}\)
已知X+Y=X+Z,且XY=XZ,则Y=Z。
已知X+Y=X+Z,且XY=XZ,则Y=Z。
中国大学MOOC:"若XY=XZ,则Y=Z。";
中国大学MOOC:"若XY=XZ,则Y=Z。";
9.1.1 函数 z=ln(xy) 的定义域为()
9.1.1 函数 z=ln(xy) 的定义域为()
G18指令用于选定( )平面. A: XY B: XZ C: YZ
G18指令用于选定( )平面. A: XY B: XZ C: YZ
逻辑代数中,若XY=XZ成立,则Y=Z
逻辑代数中,若XY=XZ成立,则Y=Z