在德鲁克目标管理概念的基础上,一学者提出了新的业绩评价方法,他是( ) A: E.C.施勒 B: 利克特 C: 麦克雷戈 D: 罗宾斯
在德鲁克目标管理概念的基础上,一学者提出了新的业绩评价方法,他是( ) A: E.C.施勒 B: 利克特 C: 麦克雷戈 D: 罗宾斯
The main difference in composition between the tissue fluid and the<br/>plasma is that the contents of the tissue fluid () A: No blood cells B: Low protein content<br/>From<br/>a + content is high C: K<br/>+ content is high<br/>High<br/>content of e.c. with our fabrication: l -
The main difference in composition between the tissue fluid and the<br/>plasma is that the contents of the tissue fluid () A: No blood cells B: Low protein content<br/>From<br/>a + content is high C: K<br/>+ content is high<br/>High<br/>content of e.c. with our fabrication: l -
下面给出的无向图中,为多重图的是( )。 A: G=<V,E>, 其中V={a, b, c, d, e},E={(a, c),(b, e) ,(a, e),(d, e)} B: G=<V,E>, 其中V={a, b, c, d, e},E={(a, b),(b, e),(e, d),(c, c)} C: G=<V,E>, 其中V={a, b, c, d, e},E={(a, b),(b, c),(c, d),(a, e)} D: G=<V,E>, 其中V={a, b, c, d, e},E={(a, b),(b, e),(e, b),(a, e),(d, e)}
下面给出的无向图中,为多重图的是( )。 A: G=<V,E>, 其中V={a, b, c, d, e},E={(a, c),(b, e) ,(a, e),(d, e)} B: G=<V,E>, 其中V={a, b, c, d, e},E={(a, b),(b, e),(e, d),(c, c)} C: G=<V,E>, 其中V={a, b, c, d, e},E={(a, b),(b, c),(c, d),(a, e)} D: G=<V,E>, 其中V={a, b, c, d, e},E={(a, b),(b, e),(e, b),(a, e),(d, e)}
∫{(e^x-1)/(e^x+1)}Dx等于() A: (e^x-1)/(e^x+1)+C B: (e^x-x)ln(e^x+1)+C C: x-2ln(e^x+1)+C D: 2ln(e^x+1)-x+C
∫{(e^x-1)/(e^x+1)}Dx等于() A: (e^x-1)/(e^x+1)+C B: (e^x-x)ln(e^x+1)+C C: x-2ln(e^x+1)+C D: 2ln(e^x+1)-x+C
∫{(e^x-1)/(e^x+1)}Dx等于() A: (e^x-1)/(e^x+1)+C B: (e^x-x)ln(e^x+1)+C C: x-2ln(e^x+1)+C D: 2ln(e^x+1)-x+C
∫{(e^x-1)/(e^x+1)}Dx等于() A: (e^x-1)/(e^x+1)+C B: (e^x-x)ln(e^x+1)+C C: x-2ln(e^x+1)+C D: 2ln(e^x+1)-x+C
∫{(e^x-1)/(e^x+1)}Dx等于() A: (e^x-1)/(e^x+1)+C B: (e^x-x)ln(e^x+1)+C C: x-2ln(e^x+1)+C D: 2ln(e^x+1)-x+C
∫{(e^x-1)/(e^x+1)}Dx等于() A: (e^x-1)/(e^x+1)+C B: (e^x-x)ln(e^x+1)+C C: x-2ln(e^x+1)+C D: 2ln(e^x+1)-x+C
【单选题】X= {a, b, c, d, e}, A= {a, b, c, d}, R= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (d, c), (b, c ), (a, c), (e, b), (a, d), (e, d), (e, a), (e, c)}, 求(X,R)的cover A. Cover={ ( a, b), (b, c), ( a, d), ( e, a ), ( e, b ) } B. Cover={ ( a, b), (d, c), (b, c), ( a, d), ( e, a )} C. Cover={ ( a, c), (d, c), (b, c), ( a, d), ( e, a )} D. Cover={ ( a, b), (d, c), (b, c ),( a, c), (e, b), ( a, d), (e, d), (e, a), (e, c )}
【单选题】X= {a, b, c, d, e}, A= {a, b, c, d}, R= {(a, a), (b, b), (c, c), (d, d), (e, e), (a, b), (d, c), (b, c ), (a, c), (e, b), (a, d), (e, d), (e, a), (e, c)}, 求(X,R)的cover A. Cover={ ( a, b), (b, c), ( a, d), ( e, a ), ( e, b ) } B. Cover={ ( a, b), (d, c), (b, c), ( a, d), ( e, a )} C. Cover={ ( a, c), (d, c), (b, c), ( a, d), ( e, a )} D. Cover={ ( a, b), (d, c), (b, c ),( a, c), (e, b), ( a, d), (e, d), (e, a), (e, c )}
设A={a,b,c,d,e},有一个划分S={{a,b},{c},{d,e}},由划分S确定A上的一个等价关系R为( ) A: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉,〈a,b〉,〈b,a〉} B: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉,〈a,b〉,〈b,a〉,〈d,e〉,〈e,d〉} C: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉,〈a,b〉,〈d,e〉,〈e,d〉} D: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉, 〈b,a〉,〈d,e〉,〈e,d〉}
设A={a,b,c,d,e},有一个划分S={{a,b},{c},{d,e}},由划分S确定A上的一个等价关系R为( ) A: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉,〈a,b〉,〈b,a〉} B: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉,〈a,b〉,〈b,a〉,〈d,e〉,〈e,d〉} C: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉,〈a,b〉,〈d,e〉,〈e,d〉} D: {〈a,a〉,〈b,b〉,〈c,c〉,〈d,d〉,〈e,e〉, 〈b,a〉,〈d,e〉,〈e,d〉}
已知集合A={a,b,c,d,e},A上的一个划分是:{{a},{b,c},{d,e}},请写出该划分对应的等价关系R: A: {(a,a),(b,b),(c,c),(d,d),(e,e),(b,c)(c,b),(d,e),(e,d)} B: {(a,a),(b,b),(c,c),(d,d),(e,e),(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),(d,e),(e,d)} C: {(a,a),(b,b),(c,c),(d,d),(e,e),(a,b),(b,a),(d,e),(e,d)} D: {(a,a),(b,b),(c,c),(d,d),(e,e),(b,c),(c,b)}
已知集合A={a,b,c,d,e},A上的一个划分是:{{a},{b,c},{d,e}},请写出该划分对应的等价关系R: A: {(a,a),(b,b),(c,c),(d,d),(e,e),(b,c)(c,b),(d,e),(e,d)} B: {(a,a),(b,b),(c,c),(d,d),(e,e),(a,b),(a,c),(b,a),(b,c),(c,a),(c,b),(d,e),(e,d)} C: {(a,a),(b,b),(c,c),(d,d),(e,e),(a,b),(b,a),(d,e),(e,d)} D: {(a,a),(b,b),(c,c),(d,d),(e,e),(b,c),(c,b)}
\( \int { { e^x}\sin {e^x}dx = } \)( ) A: \( \cos {e^x} + C \) B: \( - \cos {e^x} + C \) C: \( \arccos {e^x} + C \) D: \( - \arccos {e^x} + C \)
\( \int { { e^x}\sin {e^x}dx = } \)( ) A: \( \cos {e^x} + C \) B: \( - \cos {e^x} + C \) C: \( \arccos {e^x} + C \) D: \( - \arccos {e^x} + C \)