• 2022-10-26 问题

    以下选项中,我国软件行业首个具有自主知识产权的国际标准是______。 A: ODF B: UOF C: UOML D: OOXML

    以下选项中,我国软件行业首个具有自主知识产权的国际标准是______。 A: ODF B: UOF C: UOML D: OOXML

  • 2022-11-03 问题

    以下哪些设备属于地铁隧道通风系统( )。 A: TVF风机 B: UOF风机 C: 射流风机 D: 空调机 E: 风管

    以下哪些设备属于地铁隧道通风系统( )。 A: TVF风机 B: UOF风机 C: 射流风机 D: 空调机 E: 风管

  • 2022-10-26 问题

    文档是软件开发、使用和维护的必备资料。以下选项中,我国软件行业首个具有自主知识产权的国际标准是()。 A: ODF B: UOF C: UOML D: OOXML

    文档是软件开发、使用和维护的必备资料。以下选项中,我国软件行业首个具有自主知识产权的国际标准是()。 A: ODF B: UOF C: UOML D: OOXML

  • 2021-04-14 问题

    中国大学MOOC:下面是一段文档的向量化的程序,且未经停用词过滤fromsklearn.feature_extraction.textimportCountVectorizercorpus=[JobswasthechairmanofAppleInc.,andhewasveryfamous,Iliketouseapplecomputer,AndIalsoliketoeatapple]vectorizer=CountVectorizer()print(vectorizer.vocabulary_)print(vectorizer.fit_transform(corpus).todense())#转化为完整特征矩阵已知print(vectorizer.vocabulary_)的输出结果为:{uand:1,ujobs:9,uapple:2,uvery:15,ufamous:6,ucomputer:4,ueat:5,uhe:7,uuse:14,ulike:10,uto:13,uof:11,ualso:0,uchairman:3,uthe:12,uinc:8,uwas:16}.则最后一条print语句中文档D1,即JobswasthechairmanofAppleInc.,andhewasveryfamous的向量为

    中国大学MOOC:下面是一段文档的向量化的程序,且未经停用词过滤fromsklearn.feature_extraction.textimportCountVectorizercorpus=[JobswasthechairmanofAppleInc.,andhewasveryfamous,Iliketouseapplecomputer,AndIalsoliketoeatapple]vectorizer=CountVectorizer()print(vectorizer.vocabulary_)print(vectorizer.fit_transform(corpus).todense())#转化为完整特征矩阵已知print(vectorizer.vocabulary_)的输出结果为:{uand:1,ujobs:9,uapple:2,uvery:15,ufamous:6,ucomputer:4,ueat:5,uhe:7,uuse:14,ulike:10,uto:13,uof:11,ualso:0,uchairman:3,uthe:12,uinc:8,uwas:16}.则最后一条print语句中文档D1,即JobswasthechairmanofAppleInc.,andhewasveryfamous的向量为

  • 2022-06-05 问题

    中国大学MOOC: 下面是一段文档的向量化的程序,且未经停用词过滤from sklearn.feature_extraction.text import CountVectorizercorpus = [Jobs was the chairman of Apple Inc., and he was very famous,I like to use apple computer,And I also like to eat apple] vectorizer =CountVectorizer()print(vectorizer.vocabulary_)print(vectorizer.fit_transform(corpus).todense()) #转化为完整特征矩阵已知print(vectorizer.vocabulary_)的输出结果为:{uand: 1, ujobs: 9, uapple: 2, uvery: 15, ufamous: 6, ucomputer: 4, ueat: 5, uhe: 7, uuse: 14, ulike: 10, uto: 13, uof: 11, ualso: 0, uchairman: 3, uthe: 12,

    中国大学MOOC: 下面是一段文档的向量化的程序,且未经停用词过滤from sklearn.feature_extraction.text import CountVectorizercorpus = [Jobs was the chairman of Apple Inc., and he was very famous,I like to use apple computer,And I also like to eat apple] vectorizer =CountVectorizer()print(vectorizer.vocabulary_)print(vectorizer.fit_transform(corpus).todense()) #转化为完整特征矩阵已知print(vectorizer.vocabulary_)的输出结果为:{uand: 1, ujobs: 9, uapple: 2, uvery: 15, ufamous: 6, ucomputer: 4, ueat: 5, uhe: 7, uuse: 14, ulike: 10, uto: 13, uof: 11, ualso: 0, uchairman: 3, uthe: 12,

  • 1