• 2022-06-18 问题

    证明:如果数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的顺序主子式全不为0,那么存在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上主对角元全为1的上三角矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与主对角元全不为0的对角矩阵[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex],使得[tex=4.214x1.143]gdq/daeB4gLJDSyW2xB5BRk/ecdE1RWzda9qZg0tjoU=[/tex];并且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的这种分解式是唯一的。

    证明:如果数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的顺序主子式全不为0,那么存在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上主对角元全为1的上三角矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与主对角元全不为0的对角矩阵[tex=0.857x1.0]m2DKAQtGuc1DyN3zyNlILg==[/tex],使得[tex=4.214x1.143]gdq/daeB4gLJDSyW2xB5BRk/ecdE1RWzda9qZg0tjoU=[/tex];并且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的这种分解式是唯一的。

  • 1