在南瓜中果实的白色(W)对黄色(ω)是显性,盘状果实(D)对球状果实(d)是显性,且这两对基因是独立的,则Wωdd×ωωDd产生的后代基因型及比例为______。 A: 1/4WωDD、2/4WωDd、1/4Wωdd B: 1/4WWDD、1/4ωωdd、1/4WWDd、1/4ωωDd C: 1/2Wωdd、1/2WωDd D: 1/4WωDd、1/4Wωdd、1/4ωωDd、1/4ωωdd
在南瓜中果实的白色(W)对黄色(ω)是显性,盘状果实(D)对球状果实(d)是显性,且这两对基因是独立的,则Wωdd×ωωDd产生的后代基因型及比例为______。 A: 1/4WωDD、2/4WωDd、1/4Wωdd B: 1/4WWDD、1/4ωωdd、1/4WWDd、1/4ωωDd C: 1/2Wωdd、1/2WωDd D: 1/4WωDd、1/4Wωdd、1/4ωωDd、1/4ωωdd
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
如图2,延长ac至f使cf=ad,连接bf、df.求证
如图2,延长ac至f使cf=ad,连接bf、df.求证
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( ) A: 1 B: 2 C: 4 D: 8
如图,在梯形ABCD中,AB∥DC,∠D=90°,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是( ) A: 1 B: 2 C: 4 D: 8
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4
8、求积公式ò2 f (x)dx » 1 f (0) + 4 f (1) + 1 f (2) 的代数0 3 3 3精确度为( )。 A: 1 B: 2 C: 3 D: 4
函数[img=103x25]17e0bca19b523a5.png[/img]在区间[0,4]上的最大值和最小值分别是( )。 A: 最大值f(4)=8,最小值f(0)=0 B: 最小值f(4)=8,最大值f(0)=0 C: 最大值f(4)=8,最小值f(1)=3 D: 最大值f(1)=3,最小值f(0)=0
函数[img=103x25]17e0bca19b523a5.png[/img]在区间[0,4]上的最大值和最小值分别是( )。 A: 最大值f(4)=8,最小值f(0)=0 B: 最小值f(4)=8,最大值f(0)=0 C: 最大值f(4)=8,最小值f(1)=3 D: 最大值f(1)=3,最小值f(0)=0
设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f"(x)<0,又0<a<b,则当a<x<b时恒有( ) A: af(x)>xf(a) B: bf(x)>xf(b) C: xf(x)>bf(b) D: xf(x)>af
设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f"(x)<0,又0<a<b,则当a<x<b时恒有( ) A: af(x)>xf(a) B: bf(x)>xf(b) C: xf(x)>bf(b) D: xf(x)>af