当n≠-1时,∫x<sup>n</sup>lnxdx=()。 A: x<sup>n</sup>[lnx-(1/n)]/n+C B: x<sup>n</sup><sup>-1</sup>[lnx-(1/(n-1))]/(n-1)+C C: x<sup>n</sup><sup>+1</sup>[lnx-(1/(n+1))]/(n+1)+C D: x<sup>n</sup><sup>+1</sup>lnx/(n+1)+C
当n≠-1时,∫x<sup>n</sup>lnxdx=()。 A: x<sup>n</sup>[lnx-(1/n)]/n+C B: x<sup>n</sup><sup>-1</sup>[lnx-(1/(n-1))]/(n-1)+C C: x<sup>n</sup><sup>+1</sup>[lnx-(1/(n+1))]/(n+1)+C D: x<sup>n</sup><sup>+1</sup>lnx/(n+1)+C
当n≠-1时,∫x<sup>n</sup>lnxdx=()。 A: x<sup>n</sup>[lnx-(1/n)]/n+C B: x<sup>n</sup><sup>-</sup><sup>1</sup>[lnx-(1/(n-1))]/(n-1)+C C: x<sup>n</sup><sup>+</sup><sup>1</sup>[lnx-(1/(n+1))]/(n+1)+C D: x<sup>n</sup><sup>+</sup><sup>1</sup>lnx/(n+1)+C
当n≠-1时,∫x<sup>n</sup>lnxdx=()。 A: x<sup>n</sup>[lnx-(1/n)]/n+C B: x<sup>n</sup><sup>-</sup><sup>1</sup>[lnx-(1/(n-1))]/(n-1)+C C: x<sup>n</sup><sup>+</sup><sup>1</sup>[lnx-(1/(n+1))]/(n+1)+C D: x<sup>n</sup><sup>+</sup><sup>1</sup>lnx/(n+1)+C
设f(x)二阶可导,y=f(lnx),则y″=() A: f″(lnx) B: f″(lnx)(1/x) C: (1/x)[f″(lnx)+f′(lnx)] D: (1/x)[f″(lnx)-f′(lnx)]
设f(x)二阶可导,y=f(lnx),则y″=() A: f″(lnx) B: f″(lnx)(1/x) C: (1/x)[f″(lnx)+f′(lnx)] D: (1/x)[f″(lnx)-f′(lnx)]
函数f(x)=lnx- ln(x-1)的定义域是( )
函数f(x)=lnx- ln(x-1)的定义域是( )
设f(x)=1nx- A: lnx- B: C: B.lnx+ D: E: C.1nx-2ex F: D.lnx+2ex
设f(x)=1nx- A: lnx- B: C: B.lnx+ D: E: C.1nx-2ex F: D.lnx+2ex
求积分∫(lnx)^2dx
求积分∫(lnx)^2dx
lnX=X-1有几个解
lnX=X-1有几个解
设f′(lnx)=1+x,则f(x)=() A: x+e+C B: e+x/2+C C: lnx+(lnx)/2+C D: e+C+e/2
设f′(lnx)=1+x,则f(x)=() A: x+e+C B: e+x/2+C C: lnx+(lnx)/2+C D: e+C+e/2
下列函数中是无穷大的是() A: y=ex(x→) B: y=lnx (x→1) C: y=lnx (x→)
下列函数中是无穷大的是() A: y=ex(x→) B: y=lnx (x→1) C: y=lnx (x→)
y=lnx,(x>0)是奇函数.
y=lnx,(x>0)是奇函数.