设A=,且A的特征值为1,2,3,则有() A: x=2,y=4,z=8 B: x=-1,y=4,z∈R C: x=-2,y=2,z∈R D: x=-1,y=4,z=3
设A=,且A的特征值为1,2,3,则有() A: x=2,y=4,z=8 B: x=-1,y=4,z∈R C: x=-2,y=2,z∈R D: x=-1,y=4,z=3
在RLC串联电路中,已知R=3Ω,XL=8Ω,XC=4Ω,则电路的阻抗Z=()。 A: Z=5Ω B: Z=3+j4Ω C: Z=3-j4Ω
在RLC串联电路中,已知R=3Ω,XL=8Ω,XC=4Ω,则电路的阻抗Z=()。 A: Z=5Ω B: Z=3+j4Ω C: Z=3-j4Ω
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。判断推理证明是否正确。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) 前提引入 (2)Q(c)∧Z(c) (1)∃- (3)∀x(Q(x)→R(x)) 前提引入 (4)Q(c)→R(c) (3)∀- ( 5 )Q(c) (2) 化简 ( 6 )R(c) (4)(5) 假言推理 ( 7 )Z(c) (2) 化简 (8)R(c)∧ Z(c) (6)(7) 合取引入 (9)∃x(R(x)∧Z(x)) (8)∃+
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。判断推理证明是否正确。 证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数; 前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x)); 结论:∃x(R(x)∧Z(x))。 (1)∃x(Q(x)∧Z(x)) 前提引入 (2)Q(c)∧Z(c) (1)∃- (3)∀x(Q(x)→R(x)) 前提引入 (4)Q(c)→R(c) (3)∀- ( 5 )Q(c) (2) 化简 ( 6 )R(c) (4)(5) 假言推理 ( 7 )Z(c) (2) 化简 (8)R(c)∧ Z(c) (6)(7) 合取引入 (9)∃x(R(x)∧Z(x)) (8)∃+
R-L串联电路中,R=3Ω,Z=5Ω,则XL= A: 7Ω B: 2Ω C: 4Ω D: -2Ω
R-L串联电路中,R=3Ω,Z=5Ω,则XL= A: 7Ω B: 2Ω C: 4Ω D: -2Ω
在圆管内的定常层流流动,两板中心(r=0)速度最大,边界条件为( ) A: r=R, vz=0 B: r=0, vz=vmax C: r=R, vz=vmin D: r=R, vz=0
在圆管内的定常层流流动,两板中心(r=0)速度最大,边界条件为( ) A: r=R, vz=0 B: r=0, vz=vmax C: r=R, vz=vmin D: r=R, vz=0
已知a=[1 2 3; 4 5 6; 7 8 9],执行命令:a([3,1],:)=a([1,3],:),a将变为( )。 A: [4 5 6;4 5 6;4 5 6] B: [7 8 9;4 5 6;1 2 3] C: [2 2 2;5 5 5;8 8 8] D: [3 2 1;6 5 4;9 8 7]
已知a=[1 2 3; 4 5 6; 7 8 9],执行命令:a([3,1],:)=a([1,3],:),a将变为( )。 A: [4 5 6;4 5 6;4 5 6] B: [7 8 9;4 5 6;1 2 3] C: [2 2 2;5 5 5;8 8 8] D: [3 2 1;6 5 4;9 8 7]
在RLC串联电路中,R=4Ω,Xc=8Ω,XL=5Ω ,则电路中的总阻抗Z是( )
在RLC串联电路中,R=4Ω,Xc=8Ω,XL=5Ω ,则电路中的总阻抗Z是( )
用符号“∈”或“∉”填空:(1)−3 N,0.5 N,3 N;(2)1.5 Z,−5 Z,3 Z;(3)−0.2 Q,π Q,7.21 Q;(4)1.5 R,−1.2 R,π R.
用符号“∈”或“∉”填空:(1)−3 N,0.5 N,3 N;(2)1.5 Z,−5 Z,3 Z;(3)−0.2 Q,π Q,7.21 Q;(4)1.5 R,−1.2 R,π R.
构造下式的推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)⋀Z(x));结论:∃x(R(x)⋀Z(x))。(1)∃x(Q(x)⋀Z(x)) P(2)Q(c)⋀Z(c) ES(1)(3)∀x(Q(x)→R(x)) P(4)Q(c)→R(c) US(3)(5)Q(c) T(2)I(6)R(c) T(2)(4)I(7)Z(c) T(2)I(8)R(c)⋀Z(c) T(6)(7)I(9)∃x(R(x)⋀Z(x)) EG(8)以上推理是有效的。 A: 正确 B: 错误
构造下式的推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)⋀Z(x));结论:∃x(R(x)⋀Z(x))。(1)∃x(Q(x)⋀Z(x)) P(2)Q(c)⋀Z(c) ES(1)(3)∀x(Q(x)→R(x)) P(4)Q(c)→R(c) US(3)(5)Q(c) T(2)I(6)R(c) T(2)(4)I(7)Z(c) T(2)I(8)R(c)⋀Z(c) T(6)(7)I(9)∃x(R(x)⋀Z(x)) EG(8)以上推理是有效的。 A: 正确 B: 错误
输出九九乘法表。 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9
输出九九乘法表。 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9