17da426f4cb2265.jpg,计算[img=23x22]17da426f58ddf0c.jpg[/img]实验命令为( ). A: f=diff(log(x),3)f=2/x^3 B: syms x; f=diff(log(x),3)f=2/x^3 C: syms x;f=diff(logx,3)f=2/x^3
17da426f4cb2265.jpg,计算[img=23x22]17da426f58ddf0c.jpg[/img]实验命令为( ). A: f=diff(log(x),3)f=2/x^3 B: syms x; f=diff(log(x),3)f=2/x^3 C: syms x;f=diff(logx,3)f=2/x^3
17e0a756f3d6e2a.jpg,计算[img=23x22]17e0b849ab0b36c.jpg[/img]实验命令为( ). A: f=diff(log(x),3)f=2/x^3 B: syms x; f=diff(log(x),3)f=2/x^3 C: syms x;f=diff(logx,3)f=2/x^3
17e0a756f3d6e2a.jpg,计算[img=23x22]17e0b849ab0b36c.jpg[/img]实验命令为( ). A: f=diff(log(x),3)f=2/x^3 B: syms x; f=diff(log(x),3)f=2/x^3 C: syms x;f=diff(logx,3)f=2/x^3
计算 [img=97x44]17da60e3e6579e9.png[/img]实验命令为(). A: limit(log(x^2-3)/(x^2-3*x+2),2)ans =4 B: syms x; limit(log(x^2-3)/(x^2-3*x+2),2)ans =4 C: syms x; limit(logx^2-3/(x^2-3*x+2),x,2)ans =4
计算 [img=97x44]17da60e3e6579e9.png[/img]实验命令为(). A: limit(log(x^2-3)/(x^2-3*x+2),2)ans =4 B: syms x; limit(log(x^2-3)/(x^2-3*x+2),2)ans =4 C: syms x; limit(logx^2-3/(x^2-3*x+2),x,2)ans =4
单室模型静脉注射给药,体内血药浓度随时间变化关系式为(). A: C=k0(1-e-kt)/VK B: logC’=(-k/2.303)t’+log(k0/VK) C: logC’=(-k/2.303)t’+log[k0(1-e-kt)/VK] D: logC(-k/2.303)t+logC0 E: logX=(-k/2.303)t+logX0
单室模型静脉注射给药,体内血药浓度随时间变化关系式为(). A: C=k0(1-e-kt)/VK B: logC’=(-k/2.303)t’+log(k0/VK) C: logC’=(-k/2.303)t’+log[k0(1-e-kt)/VK] D: logC(-k/2.303)t+logC0 E: logX=(-k/2.303)t+logX0
单室模型静脉滴注给药达稳态后停止滴注的血药浓度随时间变化关系式 A: logC=C0(1-e-kt)/VK B: logC’=(-K/2.303)t’+log(k0/VK) C: logC’=(-K/2.303)t’+logk(1-e-kt)/VK D: logC=(-K/2.303)t+logC0 E: logX=(-K/2.303)t+logX0
单室模型静脉滴注给药达稳态后停止滴注的血药浓度随时间变化关系式 A: logC=C0(1-e-kt)/VK B: logC’=(-K/2.303)t’+log(k0/VK) C: logC’=(-K/2.303)t’+logk(1-e-kt)/VK D: logC=(-K/2.303)t+logC0 E: logX=(-K/2.303)t+logX0
单室模型静脉滴注给药达稳态后停止滴注血药浓度随时间变化的关系式() A: logX=(-K/2.303)t+logX0 B: logC=(-K/2.303)t+logC0 C: logC′=(-K/2.303)t′+log(K0/VK) D: logC′=(-K/2.303)t′+log[K0(1-e-KT)/VK] E: C=K0(1-e-KT)/KV
单室模型静脉滴注给药达稳态后停止滴注血药浓度随时间变化的关系式() A: logX=(-K/2.303)t+logX0 B: logC=(-K/2.303)t+logC0 C: logC′=(-K/2.303)t′+log(K0/VK) D: logC′=(-K/2.303)t′+log[K0(1-e-KT)/VK] E: C=K0(1-e-KT)/KV
单室模型静脉滴注给药达稳态后停止滴注血药浓度随时间变化的关系式为()。 A: logX=(-K/2.303)t+logX0 B: 10gC=(-K/2.303)t+logC0 C: logC′=(-K/2.303)t′+log(K0/VK) D: 10gC′=(-K/2.303)t′+log[K0(1-e-KT)/VK] E: C=K0(1-e-Kt)/KV
单室模型静脉滴注给药达稳态后停止滴注血药浓度随时间变化的关系式为()。 A: logX=(-K/2.303)t+logX0 B: 10gC=(-K/2.303)t+logC0 C: logC′=(-K/2.303)t′+log(K0/VK) D: 10gC′=(-K/2.303)t′+log[K0(1-e-KT)/VK] E: C=K0(1-e-Kt)/KV