定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)
8、在△ABC中,若AB=9,BC=6,则第三边CA的长度的取值范围是( )A、3<CA<9B、6<CA<9C、9<CA<15D、3<CA<15
8、在△ABC中,若AB=9,BC=6,则第三边CA的长度的取值范围是( )A、3<CA<9B、6<CA<9C、9<CA<15D、3<CA<15
/ananas/latex/p/1802
/ananas/latex/p/1802
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
设\( {\bf{A}} \) 为三阶矩阵,\( { { \bf{A}}^*} \)是\( {\bf{A}} \)的伴随矩阵,且\( \left| {\bf{A}} \right| = 1 \),则\( \left| {2 { { \bf{A}}^{ - 1}} + 3 { { \bf{A}}^*}} \right| = \)______
如图2,延长ac至f使cf=ad,连接bf、df.求证
如图2,延长ac至f使cf=ad,连接bf、df.求证
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
${\bf P}(X=4)=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=2)=\,$ ${\bf P}(X=1)=\,$______
为什么f(36)等于f(4*9)等于f(4)加f(9)
为什么f(36)等于f(4*9)等于f(4)加f(9)
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\rm var}(X)=\,$ ${\bf E}[X]=\,$ ${\bf P}(X=3)=\,$ ${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
%B5%B1%C4%E3%CD%FC%BC%C7%C4%E3%C8%CB%B5%C4%B8%DF%B9%F3%C9%ED%B7%DD%B5%C4%CA%B1%BA%F2%A3%AC%BE%CD%CA%C7%A3%A8%A3%A9%B5%C4%BF%AA%CA%BC%A1%A3
%B5%B1%C4%E3%CD%FC%BC%C7%C4%E3%C8%CB%B5%C4%B8%DF%B9%F3%C9%ED%B7%DD%B5%C4%CA%B1%BA%F2%A3%AC%BE%CD%CA%C7%A3%A8%A3%A9%B5%C4%BF%AA%CA%BC%A1%A3
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______
${\bf P}(X=-2)=\,$ ${\bf P}(X=1)=\,$ ${\bf P}(X=0)=\,$______