平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G,若AC=20,则AG=_________。
平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G,若AC=20,则AG=_________。
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
在△ABC中,AD为BC边上的中线,E为AD的中点,则→(EB)=() A: 43→AB-41→AC B: 1→AB-43→AC C: C.4(3)→(AB)+4(1)→(AC D: D.4(1)→(AB)+4(3)→(AC)
在△ABC中,AD为BC边上的中线,E为AD的中点,则→(EB)=() A: 43→AB-41→AC B: 1→AB-43→AC C: C.4(3)→(AB)+4(1)→(AC D: D.4(1)→(AB)+4(3)→(AC)
如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE=15,则
如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE=15,则
写一个文法G,使其语言为不以0开头的偶数集。 A: G[S]:S→AB|BA→AD|CB→2|4|6|8|0C→1|3|5||7|9|B B: G[S]:S→AB|BA→AD|CB→1|2|3|4|5|6|7|8|9C→2|4|6|8|0 C: G[S]:S→AB|BA→AD|CB→2|4|6|8|0C→1|2|3|4|5|6|7|8|9D→0|C D: G[S]:S→AB|BA→AD|DB→2|4|6|8|0D→1|2|3|4|5|6|7|8|9|0
写一个文法G,使其语言为不以0开头的偶数集。 A: G[S]:S→AB|BA→AD|CB→2|4|6|8|0C→1|3|5||7|9|B B: G[S]:S→AB|BA→AD|CB→1|2|3|4|5|6|7|8|9C→2|4|6|8|0 C: G[S]:S→AB|BA→AD|CB→2|4|6|8|0C→1|2|3|4|5|6|7|8|9D→0|C D: G[S]:S→AB|BA→AD|DB→2|4|6|8|0D→1|2|3|4|5|6|7|8|9|0
已知△ABC中AD为中线,且AB=5、AC=7,则AD的取值范围为()A、2<AD<12B、5<AD<7C、1<AD<6D、2<AD<10
已知△ABC中AD为中线,且AB=5、AC=7,则AD的取值范围为()A、2<AD<12B、5<AD<7C、1<AD<6D、2<AD<10
利用行列式的性质计算下列行列式的值1 2 0 0 02 5 0 0 0 9 8 1 2 37 6 4 5 65 4 7 8 9
利用行列式的性质计算下列行列式的值1 2 0 0 02 5 0 0 0 9 8 1 2 37 6 4 5 65 4 7 8 9
如图,在△ABC中,AB=AC=25,点D在BC上,AD=24,BD=7,试问AD平分∠BAC吗?为什么?
如图,在△ABC中,AB=AC=25,点D在BC上,AD=24,BD=7,试问AD平分∠BAC吗?为什么?
设DES加密算法中的一个S盒为: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 A: 1010 B: 0001 C: 1011 D: 0111
设DES加密算法中的一个S盒为: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 15 12 8 2 4 9 1 7 5 11 A: 1010 B: 0001 C: 1011 D: 0111
化简逻辑函数式Y=AB′CD+ABC′D+AB′+AD′为( ) A: AB′+AC+AD′ B: AB′+AC′+AD C: AB′+AC′+AD′ D: AB+AC′+AD′
化简逻辑函数式Y=AB′CD+ABC′D+AB′+AD′为( ) A: AB′+AC+AD′ B: AB′+AC′+AD C: AB′+AC′+AD′ D: AB+AC′+AD′