求定积分[img=208x53]17da65384e03d75.png[/img]; ( ) A: pi/4 - 1/4 B: pi/4 - 1/3 C: pi/4 - 1 D: pi/4 - 1/2
求定积分[img=208x53]17da65384e03d75.png[/img]; ( ) A: pi/4 - 1/4 B: pi/4 - 1/3 C: pi/4 - 1 D: pi/4 - 1/2
求定积分[img=165x50]17da65381a63c9b.png[/img]; ( ) A: (exp(6*pi) - 1)/(5*exp(2*pi)) B: (exp(6*pi) - 1)*(5*exp(2*pi)) C: (exp(6*pi) - 1)/(exp(2*pi)) D: (exp(6*pi) - 1)+(5*exp(2*pi))
求定积分[img=165x50]17da65381a63c9b.png[/img]; ( ) A: (exp(6*pi) - 1)/(5*exp(2*pi)) B: (exp(6*pi) - 1)*(5*exp(2*pi)) C: (exp(6*pi) - 1)/(exp(2*pi)) D: (exp(6*pi) - 1)+(5*exp(2*pi))
下列关于净现值NPV和获利指数PI的说法,正确的是( )。 A: NPV=0,PI=1 B: NPV>0,PI<1 C: NPV>1,PI>0 D: NPV<0,PI>1
下列关于净现值NPV和获利指数PI的说法,正确的是( )。 A: NPV=0,PI=1 B: NPV>0,PI<1 C: NPV>1,PI>0 D: NPV<0,PI>1
函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
积分$\int_0^1 x \arctan xdx=$()。 A: $\frac{\pi}{4}+\frac{1}{2}$ B: $\frac{\pi}{4}$ C: $\frac{\pi}{4}-\frac{1}{2}$ D: $\frac{1}{2}$
积分$\int_0^1 x \arctan xdx=$()。 A: $\frac{\pi}{4}+\frac{1}{2}$ B: $\frac{\pi}{4}$ C: $\frac{\pi}{4}-\frac{1}{2}$ D: $\frac{1}{2}$
计算\({\oint_L {({x^2} + {y^2})} ^n}ds\),其中\(L\)为圆周\(x = a\cos t\),\(y=asint\)\((0 \le t \le 2\pi )\)。 A: \(2\pi {a^{n + 1}}\) B: \(2\pi {a^{2n + 1}}\) C: \(\pi {a^{n + 1}}\) D: \(2\pi {a^{n + 1}}\)
计算\({\oint_L {({x^2} + {y^2})} ^n}ds\),其中\(L\)为圆周\(x = a\cos t\),\(y=asint\)\((0 \le t \le 2\pi )\)。 A: \(2\pi {a^{n + 1}}\) B: \(2\pi {a^{2n + 1}}\) C: \(\pi {a^{n + 1}}\) D: \(2\pi {a^{n + 1}}\)
9. 关于PI决策下述说法不正确的是( ) A: A. PI>1意味着项目NPV>0 B: B. PI>1意味着项目ROA>0 C: C. PI>1意味着投资回收期一定小于项目周期 D: D. PI>1意味着项目IRR>0
9. 关于PI决策下述说法不正确的是( ) A: A. PI>1意味着项目NPV>0 B: B. PI>1意味着项目ROA>0 C: C. PI>1意味着投资回收期一定小于项目周期 D: D. PI>1意味着项目IRR>0
已知\(L\)为圆周 \(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\),则\({\oint_L {({x^2} + {y^2})} ^n}ds{\rm{ = }}\) ( ). A: \(2\pi {a^{2n + 1}}\) B: \(2\pi {a^{2n - 1}}\) C: \(\pi {a^{2n + 1}}\) D: \(\pi {a^{2n - 1}}\)
已知\(L\)为圆周 \(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\),则\({\oint_L {({x^2} + {y^2})} ^n}ds{\rm{ = }}\) ( ). A: \(2\pi {a^{2n + 1}}\) B: \(2\pi {a^{2n - 1}}\) C: \(\pi {a^{2n + 1}}\) D: \(\pi {a^{2n - 1}}\)
净现值、现值指数指标之间存在的数量关系表述正确的是( ) A: 当NPV>;0时,PI=1 B: 当NPV>;0时, PI>;1 C: 当NPV<;0时, PI>;1 D: 当NPV>;0时, PI<;1
净现值、现值指数指标之间存在的数量关系表述正确的是( ) A: 当NPV>;0时,PI=1 B: 当NPV>;0时, PI>;1 C: 当NPV<;0时, PI>;1 D: 当NPV>;0时, PI<;1
NPV,PI,IRR之间的关系描述正确的是( ) A: NPV>0时,PI<1,IRR<基准折现率 B: NPV>0时,PI>1,IRR>基准折现率 C: NPV<0时,PI<1,IRR<基准折现率 D: NPV<0时,PI>1,IRR>基准折现率
NPV,PI,IRR之间的关系描述正确的是( ) A: NPV>0时,PI<1,IRR<基准折现率 B: NPV>0时,PI>1,IRR>基准折现率 C: NPV<0时,PI<1,IRR<基准折现率 D: NPV<0时,PI>1,IRR>基准折现率