设f(x)=1/1-x求f[f(x)]和f{f[f(x)]}
设f(x)=1/1-x求f[f(x)]和f{f[f(x)]}
f(st): st[]=st={:,:} f(st) (st[],st[]) 结果是
f(st): st[]=st={:,:} f(st) (st[],st[]) 结果是
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
若\(L[f(t)]=F(s)\),\(L[g(t)]=G(s)\)则\(L[f(t)*g(t)]\)为( ) A: \(F(s)\cdot G(s)\) B: \(F(s)+G(s)\) C: \(F(s)*G(s)\)
若\(L[f(t)]=F(s)\),\(L[g(t)]=G(s)\)则\(L[f(t)*g(t)]\)为( ) A: \(F(s)\cdot G(s)\) B: \(F(s)+G(s)\) C: \(F(s)*G(s)\)
若\(F'(x)=f(x)\),则 \([\int{F'(x)dx}]'=f(x) \)
若\(F'(x)=f(x)\),则 \([\int{F'(x)dx}]'=f(x) \)
若(L[f(t)]=F(s)),(L[g(t)]=G(s))则(L[f(t)*g(t)])为( )</p></p>
若(L[f(t)]=F(s)),(L[g(t)]=G(s))则(L[f(t)*g(t)])为( )</p></p>
设f(x)∈C[-π,π],且f(x)=
设f(x)∈C[-π,π],且f(x)=
已知f(x)=,则f[f(-2)]=________________.
已知f(x)=,则f[f(-2)]=________________.
设求f(x-1),f[f(x)]
设求f(x-1),f[f(x)]
已知函数f(x)=,则f(0)+f(-1)=[ ]A、9
已知函数f(x)=,则f(0)+f(-1)=[ ]A、9