若n阶矩阵 A、 B都可逆,且AB=C ,则下列结论正确的是
A: A=CB^-1
B: A=B^-1C
A: A=CB^-1
B: A=B^-1C
A
举一反三
- 若n阶矩阵 A、 B都可逆,且AXB=C ,则下列结论正确的是 A: X=A^-1B^-1C B: X=B^-1CA^-1 C: X=B^-1A^-1C D: X=A^-1CB^-1
- A,B为n阶可逆矩阵,若AB=BA,则(AB)-1=A-1B-1.A,B为n阶可逆矩阵,则(AB)-1=A-1B-1?
- 若\(A,B\)都是n阶可逆矩阵,且满足\(AB=BA\)则下述结论错误的是 A: \(A^{-1}B=BA^{-1}\) B: \(AB^{-1}=B^{-1}A\) C: \(A^{-1}B^{-1}=B^{-1}A^{-1}\) D: \(BA^{-1}=AB^{-1}\)
- 若同阶方阵\(A\)和\(B\)均可逆,则矩阵\(AB\)也是可逆的,且\((AB)^{-1}=B^{-1}A^{-1}\)。
- 设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆; ②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A-E恒可逆。上述命题中,正确的个数为( ) A: 1。 B: 2。 C: 3。 D: 4。
内容
- 0
设A,B,C均为n阶矩阵,若AB=C且B可逆,则下列哪一选项是正确的
- 1
若n阶方阵A、B都可逆,且AB=BA,则下列( )结论错误.
- 2
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆; ②若A+B可逆,则B可逆;③若B可逆,则A+B可逆; ④A-E恒可逆.正确的个数为 ( ) A: 1 B: 2 C: 3 D: 4
- 3
若A、B、C是同阶矩阵,且A可逆,则下式( )必成立。 A: 若AB=AC,则B=C B: 若AB=CB,则A=C C: 若CB=CA,则B=A D: 若BC=0,则B=0
- 4
设A,B为n 阶矩阵,若( ),则A 与B 合同. A: 存在n阶可逆矩阵\( P,Q \)且\( PAQ = B \) B: 存在n阶可逆矩阵\( P \),且 \( {P^{ - 1}}AP = B \) C: 存在n阶正交矩阵\( Q \),且 \( {Q^{ - 1}}AQ = B \) D: 存在n阶方阵\( C,T \),且\( CAT = B \)