已知非线性特性为\(y(t)=\left\{\begin{aligned}x^2(t),\,\,\, (x\geq 0) \\-x^2(t),\,\,\, (x<0) \end{aligned}\right.\) 计算该非线性特性的描述函数\(N(X)\)为_____
A: 线性函数
B: 二次函数
C: 指数函数
A: 线性函数
B: 二次函数
C: 指数函数
举一反三
- 函数$z=\arcsin\dfrac{1}{~\sqrt{x+y}~}$的定义域为( ) A: $\left\{(x,y)\left|~x+y\geq<br/>0\right.\right\}$; B: $\left\{(x,y)\left|~x+y\geq<br/>1~\text{或}~x+y\leq<br/>-1 \right.\right\}$; C: $\left\{(x,y)\left|~x+y\geq<br/>1\right.\right\}$; D: $\left\{(x,y)\left|~x+y\geq<br/>\dfrac{4}{~\pi^2~}\right.\right\}$.
- 5.下列函数中,在其定义域上有最大值和最小值的是()。 A: $f(x)=\left\{ \begin{array}{*{35}{l}} \ln \left| x \right|,\ \ \ x\ne 0 \\ 0,\ \ \ \ \ \ \ \ x=0 \\ \end{array} \right.$ B: $f(x)=\ln \left( \left| x \right|+1 \right)\ x\in [-1,1]$ C: $f(x)=\ln \left| x \right|,\ \ \ x\in [-1,1]\backslash \{0\}$ D: $f(x)=\left\{ \begin{array}{*{35}{l}} \ln \left| x \right|,\ \ \ 0\lt |x|\lt 1 \\ 0,\ \ \ \ \ \ \ \ x=0 \\ \end{array} \right.$
- 下列函数是多元初等函数的是( ) A: $f(x,y)=\left|x+y\right|$; B: $f(x,y)=\text{sgn}(x+y)$; C: $f(x,y)=\dfrac{\arcsin<br/>x-e^{y}}{~\ln(x^2+y^2)~}$; D: $f(x,y)=\left\{\begin{array}{cc}\dfrac{xy}{~x^2+y^2~},<br/>&x^2+y^2\neq 0; \\0, &x^2+y^2= 0. \end{array}\right.$
- 下列函数中,( )是初等函数. A: \(y = \arcsin ({x^2} + 2)\) B: \(f(x) = \left\{ \matrix{ 0,x \notin Q \ \cr 1,x \in Q \ \cr} \right.\) C: \(y = \sqrt { - {x^2} + 1} \) D: \(f(x) = \left\{ \matrix{ {x^2},0 \le x < 1 \ \cr x + 1,x > 1 \ \cr} \right.\)
- 6.下列函数中$x=0$是其可去间断点的为()。 A: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{x + \frac{1}{x},\;\;x \ne 0,} \\<br/>{1,\;\;\;\;\;\;\;\,x = 0} \\<br/>\end{array}} \right.<br/>$ B: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{(1 + {x^2})\frac{1}{{{x^2}}},\;\;x \ne 0} \\<br/>{1,\;\;\;\;\;\;\;\;\;\quad \;\;x = 0} \\<br/>\end{array}} \right.<br/>$ C: $f(x) = [\cos x]<br/>$($[\cdot]$表示取整函数) D: $f(x) = {\mathop{\rm sgn}} (x)<br/>$(符号函数)