在单因素方差分析中,用于检验的统计量F的计算公式为
未知类型:{'options': ['\xa0[tex=4.643x1.286]w31IjGo33/zVvma09EgS0g==[/tex]', '[tex=4.571x1.286]qR97FOy4YPmwQEpqJCAgYvCA9wbC6TuJ+/P0UWvwcXQ=[/tex]', '[tex=5.357x1.286]6VEBIBeRa3WFt+WaxsFCYb0Lo4IKiG7UU0xngyjETBk=[/tex]', '[tex=5.357x1.286]6VEBIBeRa3WFt+WaxsFCYb0Lo4IKiG7UU0xngyjETBk=[/tex]'], 'type': 102}
未知类型:{'options': ['\xa0[tex=4.643x1.286]w31IjGo33/zVvma09EgS0g==[/tex]', '[tex=4.571x1.286]qR97FOy4YPmwQEpqJCAgYvCA9wbC6TuJ+/P0UWvwcXQ=[/tex]', '[tex=5.357x1.286]6VEBIBeRa3WFt+WaxsFCYb0Lo4IKiG7UU0xngyjETBk=[/tex]', '[tex=5.357x1.286]6VEBIBeRa3WFt+WaxsFCYb0Lo4IKiG7UU0xngyjETBk=[/tex]'], 'type': 102}
举一反三
- 在单因素方差分析中, 用于检验的统计量[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的计算公式为[input=type:blank,size:6][/input] . 未知类型:{'options': ['[tex=4.643x1.286]w31IjGo33/zVvma09EgS0g==[/tex]', '[tex=4.571x1.286]BNM+YGu6JvXYjIdJBUsdsw==[/tex]', '[tex=5.357x1.286]lNhQixhadJghazGREmTKFQ==[/tex]', '[tex=5.357x1.286]0G3kLL/uH337Cd3bnrAuCg==[/tex]'], 'type': 102}
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- [tex=5.0x1.571]MqOfsQLAB/zeVSdv1WggGEBR/QFOVnXfRHI4LGW6kKErAiyBMCREOzy7eLxA5+Hj[/tex] 未知类型:{'options': ['0', '[tex=0.786x2.357]IwJCUxQJz+qfVDVP2eUlNg==[/tex]', '1', '3'], 'type': 102}
- 下列方程中是一阶微分方程的是[input=type:blank,size:4][/input]. 未知类型:{'options': ['[tex=8.0x1.571]SnLzj4UlSfnGqNtEzxfZSuZwslGsWxsvP2Y+yf7H578Vefe1Ol/nJT135DjkdnSNNikL3arAj80BjvPHaHCDiA==[/tex]', '[tex=10.571x1.571]JR4yrHJRIZfJXwhFSObwrfajFnWUvXzM/YiA3M6aDKuVBZ8I+7v5iXTXdA3E6Rm4vOE2BCfPwFP2rmRygXKEUDk1qLsNDCJ2p8GEbfCSr2s=[/tex]', '[tex=5.643x1.357]m0sKckxx+jZ9iltApBtB23TBISIOx/g0judcsS+akNFZrUNCq3g+BIVQwGbQEh/C[/tex]', '$y^{(4)}+5 y^{\\prime}-\\cos x=0$'], 'type': 102}
- 假设所有变量均为整型, 则表达式[tex=10.571x1.357]LwbIklUNi3bG92VfuhR/2s2h8bPim4KlwMHG5pBJ+3PKMuWS/4OGtcmSMjC2vxzVyrIKC8OVgBRFsqcS0s1A1u2X9g+VlWD58VLIpTfy7/0=[/tex]后[tex=0.571x0.786]FLCxr+5eRIYnIT0kyTRrXg==[/tex]的值为 未知类型:{'options': ['7', '8', '6', '2'], 'type': 102}