证明:秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的向量组中任意[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个线性无关的向量都构成它的一个极大线性无关组.
举一反三
- 证明:如果秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的向量组可以由它的[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个向量线性表出,则这[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个向量构成这向量组的一个极大线性无关组.
- 设向量组[tex=4.714x1.0]qulE2au0sCsC2RUF6/a3Jz+bwfwPeEraqg452x6rdusBeuEbPyHyGf2YX5cxbX/RbySt4XJ4XjHEzJCJ2bsA0A==[/tex]的秩为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex],证明:[tex=4.714x1.0]qulE2au0sCsC2RUF6/a3Jz+bwfwPeEraqg452x6rdusBeuEbPyHyGf2YX5cxbX/RbySt4XJ4XjHEzJCJ2bsA0A==[/tex]的任意[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个线性无关的向量都构成它的一个极大线性无关组。
- 证明:任意一个秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的矩阵都可以表为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]个秩为1的矩阵之和。
- 证明: 任意一个秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的矩阵都可以表示为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 个秩为 1 的矩阵之和.
- 向量组 [tex=5.429x1.0]C3Gt0wf4j9ybsfUN2FHZHPpFHlKGuZ51iii+CZEnJIcinPreWueZ3hFSLADWVU2w[/tex] 的秩为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 的充要条件是 A: 向量组中不含零向量 B: 向量组中没有两个向量的对应分量成比例 C: 向量组中有一个向量不能由其余向量线性表示 D: 向量组线性无关