设总体X ~ N(0 ,1),(X1 ,X2 ,… ,X5)为其样本,令T = [img=136x48]17e0bccc2e0ad56.png[/img]则有T ~ ( ) .
A: t(5) ;
B: F (1 ,1) ;
C: F (2 ,3) ;
D: F (3 ,2) .
A: t(5) ;
B: F (1 ,1) ;
C: F (2 ,3) ;
D: F (3 ,2) .
举一反三
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 设随机变量的密度函数f(x)如下:f(x)=x,0≤x<1;f(x)=2-x,1≤x<2;f(x)=0,其他.则(1)P(X≤1.5)=();(2)P(x>3)=();(3)F(2)=().
- 设f(x)=x2(x一1)(x一2),则f"(x)的零点个数为( ) A: 0 B: 1 C: 2 D: 3
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 设f(x)=(1/(1+x^2))+x^3∫(0到1)f(x)dx,求∫(0到1)f(x)dx