在互为对偶的两个线性规划中,已知对偶问题可行,当它的原问题______ 时,则对偶问题就一定是无界的
举一反三
- 下列说法正确的是( )。? 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解|在互为对偶的一对原问题与对偶问题中,不管原问题是求极大还是求极小,原问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数值|如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解|如果线性规划的对偶问题无可行解,则原问题也一定无可行解
- 下列关于线性规划原问题与对偶问题之间的关系叙述不正确的是( ) A: 任何线性规划问题存在惟一的对偶问题 B: 如果原问题与对偶问题都有可行解,则它们都有最优解 C: 如果原问题有无界,则其对偶问题一定也是无界的 D: 如果原问题有2000个变量,则对偶问题约束的个数一定是2000个
- 根据对偶的性质,当原问题无界解时,其对偶问题无可行解,反之,当对偶问题无可行解,其原问题具有无界解.
- 关于原问题和对偶问题描述正确的是( ) A: 若原问题存在可行解,则其对偶问题也一定存在可行解; B: 若对偶问题无可行解,则原问题也一定无可行解; C: 互为对偶的一对线性规划问题,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值; D: 任何一个线性规划问题具有唯一的对偶问题;
- 根据对偶问题的性质,以下内容中正确的是 A: 当对偶问题无可行解且原问题存在可行解时,则原问题具有无界解 B: 若线性规划的原问题有无穷多最优解,则其对偶问题一定存在唯一最优解 C: 当原问题为无界解时,其对偶问题也必为无界解 D: 以上皆否