(2007年真题)若
A: f(1)=4
B: f(x)在x=1处无定义
C: 在x=1的某邻域(x≠1)中,f(x)>2
D: 在x=1的某邻域(x≠1)中,f(x)≠4
A: f(1)=4
B: f(x)在x=1处无定义
C: 在x=1的某邻域(x≠1)中,f(x)>2
D: 在x=1的某邻域(x≠1)中,f(x)≠4
举一反三
- 设f(x)在x0处连续,且f(x)=1,则() A: f(x)可能不存在 B: f(x)>1 C: f(x)<1 D: f(x)=1
- 【单选题】若 f ( x ) = ( x − 1 ) x 2 − 1 2 , g ( x ) = x − 1 x + 1 ,则? A. f ( x ) = g ( x ) "> f ( x ) = g ( x ) B. lim x → 1 f ( x ) = g ( x ) "> lim x → 1 f ( x ) = g ( x ) C. lim x → 1 f ( x ) = lim x → 1 g ( x ) "> lim x → 1 f ( x ) = lim x → 1 g ( x ) D. 以上等式均不成立
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- 1.设$f(x)$在区间$I$内连续且$f(x)\ne 0$,若${{F}_{1}}(x)$,${{F}_{2}}(x)$是$f(x)$的两个原函数,则在区间$I$内( ). A: ${{F}_{2}}(x)\equiv {{F}_{1}}(x)$ B: ${{F}_{1}}(x)\equiv C{{F}_{2}}(x)$ C: ${{F}_{1}}(x)+{{F}_{2}}(x)\equiv C$ D: ${{F}_{2}}(x)-{{F}_{1}}(x)\equiv C$
- 已知函数在x=0处无意义,能否定义f(0),使f(x)在点x=0处连续?其中,f(x)=(2^1/x)-1/(2^1/x)+1.