设总体X服从指数分布,均值为μ,[img=22x22]180391632e16006.png[/img]为X的样本,用[img=22x22]180391632e16006.png[/img]和[img=40x25]180391633fa072a.png[/img]估计μ,则在均方误差准则下,[img=22x22]180391632e16006.png[/img]比[img=40x25]180391633fa072a.png[/img]更优.
错
举一反三
- 设总体X服从指数分布,均值为μ,[img=22x22]1803e09b330b393.png[/img]为X的样本,用[img=22x22]1803e09b330b393.png[/img]和[img=40x25]1803e09b4484de9.png[/img]估计μ,则在均方误差准则下,[img=22x22]1803e09b330b393.png[/img]比[img=40x25]1803e09b4484de9.png[/img]更优.
- 设总体X服从指数分布,均值为μ,[img=22x22]1802d3d7dec780c.png[/img]为X的样本,用[img=22x22]1802d3d7dec780c.png[/img]和[img=40x25]1802d3d7ef63fe9.png[/img]估计μ,则在均方误差准则下,[img=22x22]1802d3d7dec780c.png[/img]比[img=40x25]1802d3d7ef63fe9.png[/img]更优.
- 序列x(n)的傅里叶变换为X([img=22x22]1803a80946474ed.png[/img]),则[img=18x20]1803a8094e62489.png[/img](-n)的傅里叶变换为 A: X([img=22x22]1803a80955f8141.png[/img]) B: [img=24x20]1803a8095dc962e.png[/img]([img=22x22]1803a80955f8141.png[/img]) C: X([img=32x22]1803a8096f435fb.png[/img]) D: [img=24x20]1803a80978321c3.png[/img]([img=32x22]1803a8096f435fb.png[/img])
- 设[img=162x19]17e0ab913cc7ca8.jpg[/img]且X,Y相互独立,则[img=84x19]17e0ab9147a14b0.jpg[/img]. A: 14 B: 22 C: 32 D: 40
- 设随机变量X和Y都服从标准正态分布,则[img=22x22]1802fb2e78de6eb.png[/img]服从[img=19x26]1802fb2e81af917.png[/img]分布
内容
- 0
设随机变量X和Y都服从标准正态分布,则[img=22x22]180369a650229c0.png[/img]服从[img=19x26]180369a657a5f88.png[/img]分布
- 1
设随机变量X和Y都服从标准正态分布,则[img=22x22]1803c8b662ad715.png[/img]服从[img=19x26]1803c8b66afd14e.png[/img]分布
- 2
设随机变量X和Y都服从标准正态分布,则[img=22x22]18036660c3f65e2.png[/img]服从[img=19x26]18036660cc6e506.png[/img]分布
- 3
设随机变量X和Y都服从标准正态分布,则[img=22x22]18036889117e4a0.png[/img]服从[img=19x26]1803688919fbb20.png[/img]分布
- 4
若x(n)为实序列,X([img=22x22]1803a8095b075bb.png[/img])是其离散时间傅立叶变换,则 A: X([img=22x22]1803a80963adffb.png[/img])的幅度和幅角都是ω的偶函数 B: X([img=22x22]1803a80963adffb.png[/img])的幅度是ω的奇函数,幅角是ω的偶函数 C: X([img=22x22]1803a80963adffb.png[/img])的幅度是ω的偶函数,幅角是ω的奇函数 D: X([img=22x22]1803a80963adffb.png[/img])的幅度和幅角都是ω的奇函数