设曲线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]是旋转面[tex=14.929x1.357]qJtg9UpQ2uL0/hPbUJ0vjiyMbrbbwyvqiTvo07flICazGIeDUMqEcU6spIqoRkqkk2F+XYzcizR2GopzPZbymQ==[/tex]上的一条测地线,用[tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex]表示曲线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]与经线的交角.证明: 沿测地线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]成立恒等式[tex=4.929x1.357]vSqvzw60iKi7HLOEhjEdPF3+iXhXciqaql3AxPfnuYI=[/tex]常数.
举一反三
- 假定曲面[tex=1.0x1.214]hw4MAoLH+ywUs37rYsY+9g==[/tex]和[tex=1.0x1.214]mCBJKK67lwY/CXys3aGQJQ==[/tex]沿曲线[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]相切,证明:若 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]是[tex=1.0x1.214]hw4MAoLH+ywUs37rYsY+9g==[/tex]上的测地线,则 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]也必定是[tex=1.0x1.214]mCBJKK67lwY/CXys3aGQJQ==[/tex]上的测地线.如果[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]是 [tex=1.0x1.214]hw4MAoLH+ywUs37rYsY+9g==[/tex]上的曲率线或渐进曲线,又如何?
- 设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 为一简单闭曲线,[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]与[tex=1.786x1.357]q7S+DkUP+kHN4l0TDsnqnA==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内部及[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上解析,并且在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上有 [tex=4.286x1.357]HmaFCIhDwqteOxrMRU/E3w==[/tex],那么在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内必有[tex=4.286x1.357]HmaFCIhDwqteOxrMRU/E3w==[/tex].
- 设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是一条周线,且设(1) [tex=4.143x1.357]Wy3cd4kyceqegPIDJ3x11j2jym1Kg4lFoW1rOkTlGpM=[/tex]在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部亚纯,且连续到[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],(2) 沿[tex=7.286x1.357]XWbpt2HRfoTV0aZ1h1ig7I4qTwaTFFBXd7MFEm482XA=[/tex],则(试证) [tex=25.571x1.357]S/PgHmSM7NO+JOQc/JazMAFE9Aff9/2LMeNZ5hD7T7yaeXuvLfgKlxqQZzwI3KF3ViV8oQdGBLBAVp0DCcLlgsHXj3TH8EaufiCuCImQSp8=[/tex]
- 如果函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在简单闭曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 及其内部解析且在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上有 [tex=3.357x1.357]NgmJJpzN2HvpxzS47JUJGA==[/tex] 证明在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部 [tex=3.357x1.357]NgmJJpzN2HvpxzS47JUJGA==[/tex]
- 若[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在周线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部除有一个一阶级点外解析,且连续到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上 [tex=4.714x1.357]TmcsBXzsCVLNElUdaha8WH7fTrtrO9XaTLzNCp3k4xU=[/tex]证明[tex=7.786x1.357]ydNC3EcZ+5ATq34rwwixhCP9QszFjZKwPO53sJ4s3UI=[/tex]在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内部恰好有一个根.