举一反三
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。只涉及命题变元[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]的复合命题有多少不同的真值表?
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。证明:[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=1.286x1.357]1iCPfmaumBwudqtdwCwPlQ==[/tex]等价
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。证明[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]逻辑等价于[tex=3.571x1.357]vxXf8ii7O1D1363SuS1cCA==[/tex]
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]是素数且[tex=2.357x1.0]/4eX5puuWHulp5K6ynZ3MA==[/tex]。随机选择小于[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数不被[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]整除的概率是多少?
- 命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]或[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]或两者均为假时为真,而当[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和 [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为真时为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]只在[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]均为假时为真,否则为假。命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NAND [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]和[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] NOR [tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]分别表示为[tex=1.786x1.357]db85pjiUlp6DuSz3t/lTzw==[/tex]和[tex=2.071x1.214]vV5XP+CRmbDUGTiYqjNqnw==[/tex]。只用运算符[tex=0.5x1.214]HncBEvf7QrpbVngWgJZA0g==[/tex]构造一个等价于[tex=2.0x1.0]HFqbj5uZFZVrH/+vs9S2/A==[/tex]的命题
内容
- 0
【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 1
设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- 2
设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 3
找出命题[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]和[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]的合取,其中[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为命题“Rebecca的PC至少有16GB空闲磁盘空间”,[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]为命题“Rebecca的PC处理器的速度大于1GHz”
- 4
设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。