设函数f具有一阶连续导数,f''(0)存在,且f'(0)=0,f(0)=0,[tex=11.143x2.929]FgiJWgRQAKO6KUAKNMtpr42BveQYl/ToVviQ5cCtM9wcSY0QBIbGsihuelZ2Y0bAzYEbycD2Q2vfi4GC2Ijs1kB6/BRoIojNsaonEeVPYMMzs1ywITo1iMnLUJQZym3e[/tex].(1)确定a,使得g(x)处处连续;(2)对以上所确定的a,证明g(x)具有一阶连续导数.
举一反三
- 【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0, F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2, F(x)=0 (3) 1/8
- 设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在
- 设函数f(x)具有二阶连续导数,且f(x)>0,f′(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是()。 A: f(0)>1,f″(0)>0 B: f(0)>1,f″(0)<0 C: f(0)<1,f″(0)>0 D: f(0)<1,f″(0)<0
- 设函数f(x)在x=0处连续,且 A: f(0)=0且f"一(0)存在 B: f(0)=1且f"一(0)存在 C: f(0)=0且f"+(0)存在 D: f(0)=1且f"+(0)存在
- 设f''(x)在[0,2]连续,且f(0)=1,f(2)=3,f(2)=5,则。xf''(2x)dx=()。 A: 3 B: 2 C: 7 D: 6