函数f(x)在x=2处可导,且f(x)在x趋于2的极限=3,求f(2)=?
举一反三
- 设函数$f(x)=x|x(x-2)|$, 则 A: $f(x)$在$x=0$处可导,在$x=2$处不可导 B: $f(x)$在$x=0$处不可导,在$x=2$处可导 C: $f(x)$在$x=0$和$x=2$处都可导 D: $f(x)$在$x=0$和$x=2$处都不可导
- 设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。
- 设f(x)在x=a处可导,则①|f(x)|在x=a处可导;②|f(x)|在x=a处连续;③f(x)f′(x)在x=a处连续;④[f(x)]2在x=a处可导四个命题中正确的有() A: ①②③ B: ②③ C: ①③④ D: ②④
- 【单选题】设 f ( x ) 是可导函数, 则 lim Δ x → 0 f 2 ( x + △ x ) − f 2 ( x ) △ x = ()。 A. [ f ′ ( x ) ] 2 " role="presentation"> [ f ′ ( x ) ] 2 B. 2 f ′ ( x ) " role="presentation"> 2 f ′ ( x ) C. 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) " role="presentation"> 2 f ( x ) f ′ ( x ) x ) 2 f ( x ) f ′ ( x ) " role="presentation"> f ( x ) f ′ ( x ) D. 不存在;
- 设f(x)在x=2处连续,且f(2)=3,求