设y=sin(x-2),则dy=()
A: -cosxdx
B: cosxdX
C: -cos(x-2)dx
D: cos(x-2)dx
A: -cosxdx
B: cosxdX
C: -cos(x-2)dx
D: cos(x-2)dx
举一反三
- 设y=sin(x-2),则dy=______. A: -cosxdx B: cosxdx C: -cos(x-2)dx D: cos(x-2)dx
- 已知\( y = \sin x + \cos x \),则 \( dy = (\cos x - \sin x)dx \)( ).
- 函数[img=79x27]180355ae2690a03.png[/img]在x=2处的二阶泰勒展开式为 A: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 B: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2-cos(2)^2/2)*(x-2)^2 C: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)-exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2 D: exp(sin(2))+cos(2)*exp(sin(2))*(x-2)+exp(sin(2))*(sin(2)/2+cos(2)^2/2)*(x-2)^2
- 曲线积分$$\int_{(0,0}^{(x,y)}(2x\cos y-y^2\sin x)dx+(2y\cos x-x^2\sin y)dy=$$ A: $y^2\cos x+x^2\cos y$ B: $x^2\cos x+y^2\cos y$ C: $x^2\sin y+y^2\sin x$ D: $x^2\sin x+y^2\sin y$
- 3. $(2x\cos y-{{y}^{2}}\sin x)dx+(2y\cos x-{{x}^{2}}\sin y)dy$的原函数是 ( ) A: ${{x}^{2}}\sin y-{{y}^{2}}\sin x+C$ B: ${{x}^{2}}\sin y+{{y}^{2}}\sin x+C$ C: ${{x}^{2}}\cos y-{{y}^{2}}\cos x+C$ D: ${{x}^{2}}\cos y+{{y}^{2}}\cos x+C$