试求[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上均匀分布的特征函数.
举一反三
- 试求定义在 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 上的函数,它是 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 与 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 之间的一一对应,但在 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 的任一子区间上都不是单调函数.
- 设 [tex=1.714x1.214]drqhrkQv+rX/M+8NJCSetQ==[/tex] 是相互独立的随机变量,它们都服从 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 上的均匀分布,试求 [tex=4.214x1.357]uXuIA+iPjjYjpxIeKS0E7Q==[/tex] 的概率密度
- 求函数[tex=3.643x1.5]/kZa3yFdGcUsqMqT6OM0uQ==[/tex]在区间[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上的二次最佳平方逼近多项式。
- 设随机变量 [tex=1.714x1.214]drqhrkQv+rX/M+8NJCSetQ==[/tex] 相互独立,且都服从 [tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex] 上的均匀分布, 求 : [tex=2.214x1.143]tkk4aXcDoKeg9ZsIAK+yrQ==[/tex] 的概率密度.
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的定义域为[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex],求函数[tex=3.5x1.357]KRcmODxxV682A+j+PI+AlQ==[/tex]的定义域 .