x=tan(t)sin(t)-cos(t)=?
举一反三
- 求解常微分方程组<img src="http://img1.ph.126.net/B8qMozAYz7oEzmWV3LBSvg==/6597340246519736485.png" />, 应用的语句是? DSolve[{x'[t]+y[t]==Cos[t],y'[t]+x[t]==Sin[t]},{x,y},t]|DSolve[{x'[t]+y[t]==Cos[t],y'[t]+x[t]==Sin[t]},x[t],y[t],t]|DSolve[{x'[t]+y[t]==Cos[t],y'[t]+x[t]==Sin[t]},{x[t],y[t]},t]|DSolve[x'[t]+y[t]=Cos[t],y'[t]+x[t]=Sin[t],{x[t],y[t]},t]
- 求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)
- 设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)
- 下列函数是奇谐函数的是? A: x(t)=sin(3t+2)+1 B: x(t)=cos(t+2) C: x(t)=sin(t)+2 D: x(t)=cos(2t+1)
- 一空间曲线由参数方程x=ty=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。? t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t*t);plot3(x, y, z)|t=-3:0.1:3;y=sin (2*t);z=cos (3*t.*t);plot3 (x, y, z)|t=-3:0.1:3;x=t;y=sin (2*t);z=cos (3*t.*t);plot3(x, y, z, t)