任意抛掷一颗骰子,观察出现的点数.设事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]表示“出现偶数点”,事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]表示出现的点数能被 3 整除".把事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]及[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]分别表示为样本点的集合
举一反三
- 任意抛掷一颗骰子,观察出现的点数.设事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]表示“出现偶数点”,事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]表示出现的点数能被 3 整除".写出试验的样本点及样本空间.
- 掷一款均匀骰子,求(1) 出现偶数点事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex](2) 出现奇数点事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex](3) 出现点数不超过 4 的事件[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 的概率
- 进行 4 次独立重复试验,每次试验中事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生的概率为0.3,如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]不发生,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]也不发生;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 1 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.4 ;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.6;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次以上,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]一定发生.求事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率.
- 设[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]是三个随机事件,试用[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]表示下列各事件:(1)恰有[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生;(2)[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]都发生而[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]不发生;(3)所有这三个事件都发生;(4)[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]至少有一个发生;(5)至少有两个事件发生;(6)恰有一个事件发生;(7)恰有两个事件发生;(8)不多于一个事件发生;(9)不多于两个事件发生;(10)三个事件都不发生.
- 设有四张卡片分别标以数字1,2,3,4,今任取一张,设事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为取到1或2,事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为取到1或3,事件[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为取到1或4,试验证[tex=22.214x3.071]Ck4j1YFlvVH5wCAykOEMi++IszHTh8h9QeHhqkwGi/K+aH87eNmhNg7En0z7R0/+mLtklycxACjRXcb6ZTF+04GQe2wnO6jBJzhwArgaGg4ADwnbnuClQcQutRuaZhsj/Ynq0VCVFU/MSCcb03PICrYUVfn+VB6sR5VIA6e4pu0=[/tex]