• 2022-05-31
    微分方程 $y''-4y'=0$ 的通解为( ).
    A: $y=Ce^{4x}$
    B: $y=C_1x+C_2e^{4x}$
    C: $y=(C_1+C_2x)e^{4x}$
    D: $y=C_1+C_2e^{4x}$
  • D

    举一反三

    内容

    • 0

      方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$

    • 1

      问题1:准线方程为x=2的抛物线的标准方程为( ) A: y²=-4x B: y²=-8x C: y²=4x D: y²-6x=0

    • 2

      \( y = 2 - x \) ,\( {y^2} = 4x + 4 \) 所围图形面积为64。

    • 3

      ‏求解方程组[img=218x63]1803072f0e0e849.png[/img]接近 (2,2) 的解‌ A: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]

    • 4

      求解方程组[img=218x63]1803072e5daced1.png[/img]接近 (2,2) 的解 A: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]