微分方程 $y''-4y'=0$ 的通解为( ).
A: $y=Ce^{4x}$
B: $y=C_1x+C_2e^{4x}$
C: $y=(C_1+C_2x)e^{4x}$
D: $y=C_1+C_2e^{4x}$
A: $y=Ce^{4x}$
B: $y=C_1x+C_2e^{4x}$
C: $y=(C_1+C_2x)e^{4x}$
D: $y=C_1+C_2e^{4x}$
举一反三
- (4)()#include()extern()serial_initial()();()main()(){()int()a,b();()unsigned()int()x,y();()serial_initial()();()a=b=0xaa55();x=y=0xaa55;()printf("\n()a=%4x()b=%4x()x=%4x()y=%4x",a,b,x,y)();()a=a<<1();b=b>>1;()x=x<<1();y=y>>1;()printf("\n()a=%4x()b=%4x()x=%4x()y=%4x",a,b,x,y)();()printf("\n")();()printf("\n")();()printf("That()is()all.\n")();()while(1)();()}()______________________________________________________________________________________________________________________________
- 如下C程序的输出是什么?#include [stdio.h]void Func1 (int x, int y);void Func2 (int *x, int *y); int main() { int x = 3; int y = 4;Func1 (x, y); printf ("x = %d, y = %d\n", x, y);Func2(&x, &y); printf ("x = %d, y = %d\n", x, y);} void Func1 (int x, int y) { x = x + y; y = x - y; x = x - y; printf ("x = %d, y = %d\n", x, y);} void Func2 (int *x, int *y) { *x = *x + *y; *y = *x - *y; *x = *x - *y;;} A: x = 3, y = 4x = 3, y = 4x = 3, y = 4 B: x = 4, y = 3x = 4, y = 3x = 4, y = 3 C: x = 3, y = 4x = 3, y = 4x = 4, y = 3 D: x = 4, y = 3x = 3, y = 4x = 4, y = 3
- 已知\( y = {x^2}{e^{ - x}} \),则\( y'' \)为( ). A: \( 2{e^{ - x}} - 4x{e^{ - x}} - {x^2}{e^{ - x}} \) B: \( 2{e^{ - x}} - 4x{e^{ - x}} + {x^2}{e^{ - x}} \) C: 0 D: \( 2{e^{ - x}} - 4x{e^{ - x}} \)
- 已知\( y = {x^2} + 4x \),则\( dy \)为( ). A: \( (2x + 4)dx \) B: \( 2xdx \) C: \( ({x^2} + 4)dx \) D: \( ({x^2} + 4x)dx \)
- 求下列函数的导数 (1)y=(x²-1)³ (2)y=cos³4x (3)y=ln(lnx) (4)y=arcsin(1/x)