存在正交变换,把三阶实对称矩阵对应的二次型化为标准形则的特征值为( )142fe...e4b0578413d483e5.gif
举一反三
- 实对称矩阵的特征值为,则对应的二次型的标准形为()570f13c0e4b0578...e4b0578413d483e5.gif
- 设二次型[tex=24.714x1.286]CZceaA29TwHln7fjaDo6Nifnufo9x3cQRrcpL+KcvpJhAvESYF6ipEehuDUMjUTseL9wVZbkt5i+ZTM/JAQEIxGwjbanB0+ufKzKqoukbXo=[/tex],其中二次型的矩阵[tex=0.857x1.286]VDaqe/5gsI6W8PDnV4Qzpg==[/tex]的特征值之和为1,特征值之积为-12。(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵。
- 设二次型[tex=21.857x1.5]CKlOGn/4oc+CIjd/NrEXYL4dkmrBlW2GCC51Nn4jxKDg+yW4FXOhchdhDvZkeIcsfNXE6Gg+1JFPWeblNVPAtRUgH7v5psH194iWkVKb7tSWax2bXMs290ubcWE281+YAb+gssc+rjMgEawuTq1+VA==[/tex], 其中二次型的矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 的特征值之和为 1,特征值之积为-12。 (1)求 [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 的值; (2) 利用正交变换将二次型化为标准形,并写出所用的正交变换和对应的正交矩阵。
- [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为三阶实对称矩阵,且满足[tex=8.0x1.286]XLsM8rZATea1sn/qZpDgN5/CBRwsSFZX+tNyT/CJvNc=[/tex],二次型[tex=2.5x1.286]ZozYeNpXUYhfEXg4d4jTwoXa8h01eUvdLYGLGc50MUQ=[/tex]经正交变换可化为标准形,求此标准形的表达式。
- 设二次型[tex=21.714x1.5]AkjIkUm3A8xTId+eQbup8tBtUstP8XF2BFVnl1O/4vpKji99u3iVmpRS5j6NkpJgtMdfS11YsRB87oKxhcRsJfpCx7pMlj4J5KP1Ieo/cA3+BSJY1tXv+cKKwnaOgpj+0/eLwLethKUP51Ks1T8xbw==[/tex]已知[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的特征值之和为1, 特征值之积为[tex=1.786x1.143]fomf6X2Y0Uf4H7nzFm64Hg==[/tex],利用正交变换将二次型[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]化为标准形,并写出所用的正交变换和对应的正交矩阵。