• 2024-03-08
    圆柱螺线 r(t)= (cos3t,sin3t,t的参数t是自然参数.
  • 内容

    • 0

      单位向量函数r(t)=(cos3t,sin3t,0)关于t的旋转速度等于

    • 1

      设\(z = {e^{x - 2y}}\),而\(x = \sin t,\;y = {t^3},\)则\( { { dz} \over {dt}} = \)( ) A: \({e^{\sin t - 2{t^3}}}\) B: \({e^{\sin t - 2{t^3}}}\left( {\cos t - 6{t^2}} \right)\) C: \({e^{\sin t - 2{t^3}}}\ {\sin t } \) D: \({e^{\sin t - 2{t^3}}}\,{t^3}\)

    • 2

      求微分方程[img=261x61]17da6536c0cca5d.png[/img]的通解; ( ) A: C18*cos(t) - C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) B: C18*cos(t) + C20*sin(t) - C19*t*cos(t) - C21*t*sin(t) C: C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t) D: -C18*cos(t) + C20*sin(t) + C19*t*cos(t) + C21*t*sin(t)

    • 3

      曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$

    • 4

      求解常微分方程组<img src="http://img1.ph.126.net/B8qMozAYz7oEzmWV3LBSvg==/6597340246519736485.png" />, 应用的语句是? DSolve[{x'[t]+y[t]==Cos[t],y'[t]+x[t]==Sin[t]},{x,y},t]|DSolve[{x'[t]+y[t]==Cos[t],y'[t]+x[t]==Sin[t]},x[t],y[t],t]|DSolve[{x'[t]+y[t]==Cos[t],y'[t]+x[t]==Sin[t]},{x[t],y[t]},t]|DSolve[x'[t]+y[t]=Cos[t],y'[t]+x[t]=Sin[t],{x[t],y[t]},t]