【单选题】求函数y=sin(xy)+x/5的极小值,初始点为(1,1)的命令为( )。
A. FindMinimum[Sin[x*y]+x/5,{x,1},{y,1}] B. FindMinimum[sin[xy]+x/5,{x,1},{y,1}] C. FindMaximum[Sin[x*y]+x/5,{x,1},{y,1}] D. Findminimum[Sin[x*y]+x/5,
A. FindMinimum[Sin[x*y]+x/5,{x,1},{y,1}] B. FindMinimum[sin[xy]+x/5,{x,1},{y,1}] C. FindMaximum[Sin[x*y]+x/5,{x,1},{y,1}] D. Findminimum[Sin[x*y]+x/5,
举一反三
- 4.下列曲线中有渐近线的是 A: $y={{x}^{2}}+\sin x$ B: $y=x+\sin x$ C: $y={{x}^{2}}+\sin \frac{1}{x}$ D: $y=x+\sin \frac{1}{x}$
- <img src="http://edu-image.nosdn.127.net/E6A0628104FCB0F521FBF2AAAC7F1968.png?imageView&thumbnail=890x0&quality=100" style="width: 558px; height: 33px;" />? syms xy=log(1/x*x+exp(x))+sin(1-x^2)dy/dx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x^2)dydx=diff(y,x)|syms xy=log(1/x/x+exp(x))+sin(1-x)^2dydx=diff(y,x)|syms xy=log(1/x/x+exp^x)+sin(1-x^2)dydx=diff(y,x)
- 设$y = \sin (-x + 1)$,则${y^{\left( 5 \right)}} = $______ 。
- 已知\( y = \ln (\sin x) \),则\( y' \)为( ). A: \( {1 \over {\sin x}} \) B: \( {1 \over {\cos x}} \) C: \( \cot x \) D: \( - \cot x \)
- 设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)