4.下列曲线中有渐近线的是
A: $y={{x}^{2}}+\sin x$
B: $y=x+\sin x$
C: $y={{x}^{2}}+\sin \frac{1}{x}$
D: $y=x+\sin \frac{1}{x}$
A: $y={{x}^{2}}+\sin x$
B: $y=x+\sin x$
C: $y={{x}^{2}}+\sin \frac{1}{x}$
D: $y=x+\sin \frac{1}{x}$
举一反三
- 下列函数在点$(0,0)$的重极限存在的是 A: $f(x,y)=\frac{y^2}{x^2+y^2}$ B: $f(x,y)=(x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ C: $f(x,y)=\frac{x^2y^2}{x^2y^2+(x-y)^2}$ D: $f(x,y)=\frac{x^2y^2}{x^3+y^3}$
- 求函数$f(x)=x^{\sin x}$的导数 A: $x^{\cos x}$ B: $\sin (x) x^{\sin (x) -1}$ C: $x^{\sin x}(\cos x\ln x+\frac{\sin x}{x})$ D: $x^{\sin x}(\sin x\ln x+\frac{\cos x}{x}$
- 求下列不定积分.[tex=7.286x2.643]28VI4S//fW038PiMAbBHktfj3FfJYocy4+TgcP5gH+6DCjcL5MVe5w4GLCJx2oaC[/tex].腺 由于 $\sin ^{4} x+\cos ^{4} x=\left(\cos ^{2} x-\sin ^{2} x\right)^{2}+2 \sin ^{2} x \cos ^{2} x$$=\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x$原式 $=\int \frac{\mathrm{d} x}{\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x}$
- 方程${{x}^{2}}{{y}^{''}}-(x+2)(x{{y}^{'}}-y)={{x}^{4}}$的通解是( ) A: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$ B: $y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ C: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{4}})$ D: $y={{C}_{1}}x+{{C}_{2}}x{{e}^{x}}-(\frac{1}{2}{{x}^{3}}+{{x}^{2}})$
- 下列各组选项的两个语句运行结果不同的是? Dt[Sin[x],{x,4}] ,D[Sin[x],{x,4}]|D[Sin[x]Sin[y],x], Dt[Sin[x]Sin[y],x,Constants→y]|Dt[Sin[x]Sin[y],x] ,D[Sin[x]Sin[y],x,NonConstants→y]|Dt[x^2y^3,x,y],D[x^2y^3,x,y]