【单选题】设 均为n阶方阵,则下列命题正确的是()
A. (A) 若 皆不可逆,则A+B也不可逆 B. 若AB不可逆,则 都不可逆 C. 若AB可逆,则 都可逆 D. 若A可逆,则 可逆
A. (A) 若 皆不可逆,则A+B也不可逆 B. 若AB不可逆,则 都不可逆 C. 若AB可逆,则 都可逆 D. 若A可逆,则 可逆
举一反三
- 设A、B都是n阶方阵,下面结论正确的是 A: 若A、B均可逆,则A+B可逆. B: 若A、B均可逆,则AB可逆. C: 若A+B可逆,则A-B可逆. D: 若A+B可逆,则A,B均可逆.
- 设A,B都是n 阶矩阵,问下列命题是否成立?若成立,给出证明;若不成立,举反例说明。(1)若A,B皆不可逆,则A+B也不可逆;(2)若AB可逆,则A,B都可逆;(3)若AB不可逆,则A,B都不可逆;(4)若A可逆,则kA可逆(k是数)。
- 设A,B均为n阶矩阵,且AB=A+B,则①若A可逆,则B可逆; ②若B可逆,则A+B可逆;③若A+B可逆,则AB可逆;④A-E恒可逆。上述命题中,正确的个数为( ) A: 1。 B: 2。 C: 3。 D: 4。
- 设A,B均为n阶矩阵,且AB=A+B,则 (1)若A可逆,则B可逆; (2)若B可逆,则A+B可逆; (3)若A+B可逆,则AB可逆; (4)A-E恒可逆. 上述命题中,正确的命题共有( ) A: 1个 B: 2个 C: 3个 D: 4个
- 设A,B均为n阶矩阵,且AB=A+B,则(1)若A可逆,则B可逆(2)若B可逆,则A+B可逆(3)若A+B可逆,则AB可逆(4)A—E恒可逆上述命题中,正确的命题共有( ) A: 1个. B: 2个. C: 3个. D: 4个.