试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 定义在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上,则其第一类间断点是可数的.
举一反三
- 若函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在有限开区间 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上一致连续,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 上有界.
- 若函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在区间 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内不可导,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内不连续.
- 若函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内单调,则在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex] 内 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 必不存在极值.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.0x1.357]5BzgMyDa9DcLuS67nNtOAQ==[/tex] 上连续,在 [tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内可导,且[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]不为线性函数,试证在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内至少有一点[tex=0.5x1.214]qqpHxP43oSTaBTohjVBA4g==[/tex],使得[tex=9.0x2.786]k5WmVyEs7pZLED18JtYsUG0DCxPqBPT3sQyhFJL9buICR+RaReEFBvl0+5KOziYhFCy4p6mhfCZDP5WJbdU/erPZe4u9a5cqzPsFeeIB818=[/tex]
- 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内有定义,并且[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内任何[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex],存在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的某个邻域[tex=1.214x1.214]tQpWU+/AJNCxDbrEo1d9wQ==[/tex],使得[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.214x1.214]tQpWU+/AJNCxDbrEo1d9wQ==[/tex]内有界.问:[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]内是否有界?又若将[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]改为[tex=2.0x1.357]uQo0Qwms4Bgi6pleNWBbfw==[/tex],如何?