题目09. 考虑课程讲义中的情形3(两端都不固定),记号与讲义中一致,下列说法错误的是:
A: \(e=Au\),其中\(A=\begin{pmatrix}-1& 1& 0\\ 0& -1& 1\end{pmatrix}\)
B: \(f=A^Ty\),其中\(A=\begin{pmatrix}-1& 1& 0\\ 0& -1& 1\end{pmatrix}\)
C: \(f_1+f_2+f_3=0\)
D: \(f=Ku\),其中\(K=\begin{pmatrix}C_2& -C_2& 0\\ C_2& C_2+C_3& C_3\\ 0& -C_3& C_3\end{pmatrix}\)
A: \(e=Au\),其中\(A=\begin{pmatrix}-1& 1& 0\\ 0& -1& 1\end{pmatrix}\)
B: \(f=A^Ty\),其中\(A=\begin{pmatrix}-1& 1& 0\\ 0& -1& 1\end{pmatrix}\)
C: \(f_1+f_2+f_3=0\)
D: \(f=Ku\),其中\(K=\begin{pmatrix}C_2& -C_2& 0\\ C_2& C_2+C_3& C_3\\ 0& -C_3& C_3\end{pmatrix}\)
举一反三
- 下列哪个矩阵的列空间是和其他三个矩阵的列空间不同的 A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}\) D: \(\begin{pmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}\)
- 设\(E\)是初等阵,表示第3行减去第1行的7倍,则\(E^{-1}=\) A: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & -7 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}\)
- 下面哪个个方阵满足存在正整数\(n\),使得它的\(n\)次方是零矩阵? A: \(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
- 下列矩阵中是单位矩阵的为( ). A: $\begin{pmatrix}1&1\\1&1\end{pmatrix}$ B: $\begin{pmatrix}1&0\\0&1\end{pmatrix}$ C: $\begin{pmatrix}1&0\\0&0\end{pmatrix}$ D: $\begin{pmatrix}0&1\\1&0\end{pmatrix}$
- \(A\)同上题,将其对角化\(A=S\Lambda S^{-1}\)的方阵\(S\)可以是 A: \(\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}\)