题目09. 在\(\mathbb{R}^2\)中先关于\(y=x\)反射,再平移\([1,1]^T\),再关于\(y=-x\)反射的映射是: A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x+1\\ y+1\end{pmatrix}\) B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x-1\\ y-1\end{pmatrix}\) C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x+1\\ -y+1\end{pmatrix}\) D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x-1\\ -y-1\end{pmatrix}\)
题目09. 在\(\mathbb{R}^2\)中先关于\(y=x\)反射,再平移\([1,1]^T\),再关于\(y=-x\)反射的映射是: A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x+1\\ y+1\end{pmatrix}\) B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x-1\\ y-1\end{pmatrix}\) C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x+1\\ -y+1\end{pmatrix}\) D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x-1\\ -y-1\end{pmatrix}\)
下列矩阵中是单位矩阵的为( ). A: $\begin{pmatrix}1&1\\1&1\end{pmatrix}$ B: $\begin{pmatrix}1&0\\0&1\end{pmatrix}$ C: $\begin{pmatrix}1&0\\0&0\end{pmatrix}$ D: $\begin{pmatrix}0&1\\1&0\end{pmatrix}$
下列矩阵中是单位矩阵的为( ). A: $\begin{pmatrix}1&1\\1&1\end{pmatrix}$ B: $\begin{pmatrix}1&0\\0&1\end{pmatrix}$ C: $\begin{pmatrix}1&0\\0&0\end{pmatrix}$ D: $\begin{pmatrix}0&1\\1&0\end{pmatrix}$
以下 ____ 不在\(C(A^T)\)中 A: \(\begin{pmatrix}1&2&-6&3\end{pmatrix}^T\) B: \(\begin{pmatrix}1&-2&3&-2\end{pmatrix}^T\) C: \(\begin{pmatrix}1&1&2&-1\end{pmatrix}^T\) D: \(\begin{pmatrix}1&-1&-1&1\end{pmatrix}^T\)
以下 ____ 不在\(C(A^T)\)中 A: \(\begin{pmatrix}1&2&-6&3\end{pmatrix}^T\) B: \(\begin{pmatrix}1&-2&3&-2\end{pmatrix}^T\) C: \(\begin{pmatrix}1&1&2&-1\end{pmatrix}^T\) D: \(\begin{pmatrix}1&-1&-1&1\end{pmatrix}^T\)
题目08. 在\(\mathbb{R}^2\)中,先平移\([1,1]^T\),再旋转\(\frac{\pi}{3}\),在伸长2倍的映射是: A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x+\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x-y+1+\sqrt{3}\end{pmatrix}\) B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x-\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x+y+1+\sqrt{3}\end{pmatrix}\) C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}\sqrt{3}x+y+1-\sqrt{3}\\ x-\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\) D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} \sqrt{3}x-y+1-\sqrt{3}\\ x+\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\)
题目08. 在\(\mathbb{R}^2\)中,先平移\([1,1]^T\),再旋转\(\frac{\pi}{3}\),在伸长2倍的映射是: A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x+\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x-y+1+\sqrt{3}\end{pmatrix}\) B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x-\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x+y+1+\sqrt{3}\end{pmatrix}\) C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}\sqrt{3}x+y+1-\sqrt{3}\\ x-\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\) D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} \sqrt{3}x-y+1-\sqrt{3}\\ x+\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\)
假设\(x_k\)表示第\(k\)年某校学生喜欢微积分胜于线性代数的百分比,则 \(y_k = 1- x_k\)表示更喜欢线性代数的百分比.在\(k + 1\)年, 原来更喜欢微积分的同学的\(1/5\)想法转变,而原来更喜欢线性代数的同学的\(3/10\)改变了想法.于是有\(\begin{pmatrix}x_{k+1}\\y_{k+1}\end{pmatrix}=A\begin{pmatrix}x_k\\y_k\end{pmatrix}\). 则极限 \(\lim_{k\rightarrow \infty} A^k\begin{pmatrix}0.5\\0.5\end{pmatrix}=\_\_.\) A: \(\begin{pmatrix}0.6\\0.4\end{pmatrix}\) B: \(\begin{pmatrix}0.5\\0.5\end{pmatrix}\) C: \(\begin{pmatrix}0.4\\0.6\end{pmatrix}\) D: \(\begin{pmatrix}0.7\\0.3\end{pmatrix}\)
假设\(x_k\)表示第\(k\)年某校学生喜欢微积分胜于线性代数的百分比,则 \(y_k = 1- x_k\)表示更喜欢线性代数的百分比.在\(k + 1\)年, 原来更喜欢微积分的同学的\(1/5\)想法转变,而原来更喜欢线性代数的同学的\(3/10\)改变了想法.于是有\(\begin{pmatrix}x_{k+1}\\y_{k+1}\end{pmatrix}=A\begin{pmatrix}x_k\\y_k\end{pmatrix}\). 则极限 \(\lim_{k\rightarrow \infty} A^k\begin{pmatrix}0.5\\0.5\end{pmatrix}=\_\_.\) A: \(\begin{pmatrix}0.6\\0.4\end{pmatrix}\) B: \(\begin{pmatrix}0.5\\0.5\end{pmatrix}\) C: \(\begin{pmatrix}0.4\\0.6\end{pmatrix}\) D: \(\begin{pmatrix}0.7\\0.3\end{pmatrix}\)
题目03. 在\(\mathbb{R}^2\)中将向量逆时针旋转\(\theta\)角对应的旋转变换矩阵是: A: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) B: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) C: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\) D: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\)
题目03. 在\(\mathbb{R}^2\)中将向量逆时针旋转\(\theta\)角对应的旋转变换矩阵是: A: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) B: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) C: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\) D: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\)
下面哪个矩阵不是\(2\)阶酉矩阵? A: \(\begin{pmatrix}e^i\cos{\theta}&e^i\sin{\theta}\\-e^i\sin{\theta}&e^i\cos{\theta}\end{pmatrix}\) B: \(\begin{pmatrix}\cos{\theta}&\sin{\theta}\\-\sin{\theta}&\cos{\theta}\end{pmatrix}\) C: \(\begin{pmatrix}1&0\\0&1\end{pmatrix}\) D: \(\begin{pmatrix}e^i\cos{\theta}&e^i\sin{\theta}\\e^{-i}\sin{\theta}&e^i\cos{\theta}\end{pmatrix}\)
下面哪个矩阵不是\(2\)阶酉矩阵? A: \(\begin{pmatrix}e^i\cos{\theta}&e^i\sin{\theta}\\-e^i\sin{\theta}&e^i\cos{\theta}\end{pmatrix}\) B: \(\begin{pmatrix}\cos{\theta}&\sin{\theta}\\-\sin{\theta}&\cos{\theta}\end{pmatrix}\) C: \(\begin{pmatrix}1&0\\0&1\end{pmatrix}\) D: \(\begin{pmatrix}e^i\cos{\theta}&e^i\sin{\theta}\\e^{-i}\sin{\theta}&e^i\cos{\theta}\end{pmatrix}\)
下面哪个个方阵满足存在正整数\(n\),使得它的\(n\)次方是零矩阵? A: \(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
下面哪个个方阵满足存在正整数\(n\),使得它的\(n\)次方是零矩阵? A: \(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
与方程组[img=178x71]180326360dd53c1.png[/img]等价的向量方程为? A: [img=268x63]1803263618ad3d6.png[/img] B: [img=252x63]18032636222100e.png[/img] C: [img=268x63]180326362cd5ee7.png[/img] D: 7 \end{pmatrix}x_2+\begin{pmatrix}5\\5\\7 \end{pmatrix}x_3=\begin{pmatrix}0\\1\\3 \end{pmatrix}[img=268x63]18032636374ddf5.png[/img]
与方程组[img=178x71]180326360dd53c1.png[/img]等价的向量方程为? A: [img=268x63]1803263618ad3d6.png[/img] B: [img=252x63]18032636222100e.png[/img] C: [img=268x63]180326362cd5ee7.png[/img] D: 7 \end{pmatrix}x_2+\begin{pmatrix}5\\5\\7 \end{pmatrix}x_3=\begin{pmatrix}0\\1\\3 \end{pmatrix}[img=268x63]18032636374ddf5.png[/img]
下列哪个矩阵的列空间,行空间,零空间,左零空间维数之和最大? A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\) D: \(\begin{pmatrix} 1 & 2 & 9 \\ 9 & 1 & 8 \\ 1 & 0 & 1 \end{pmatrix}\)
下列哪个矩阵的列空间,行空间,零空间,左零空间维数之和最大? A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\) D: \(\begin{pmatrix} 1 & 2 & 9 \\ 9 & 1 & 8 \\ 1 & 0 & 1 \end{pmatrix}\)