• 2021-04-14
    F(x,t)=f(x+2t)+f(3x-2t),Fx(0,0)=()(0,0)=
  • 4f’(0

    内容

    • 0

      【单选题】设X为连续型随机变量, 其概率密度: f(x)=Ax2, x∈(0,2); 其它为0. 求(1)A=(); (2) 分布函数F(x)=(); (3) P{1<X<2} (10.0分) A. (1)3/8; (2)x<0,    F(x)=0; 0≤x<2, F(x)=1/8x³; x≥2,  F(x)=1; (3) 7/8 B. (1)5/8; (2)x<0,    F(x)=0; 0≤x<2,   F(x)=1/8x³; x≥2,    F(x)=0 (3) 1/8

    • 1

      设f(x)是连续函数,F(x)=∫(0,x)f(t)dt

    • 2

      设f(x)为连续函数,F(t)=,则F’(2)=()。 A: f(2) B: 2f(2) C: -f(2) D: 0

    • 3

      设函数f(x)具有二阶连续导数,且f(x)>0,f′(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是()。 A: f(0)>1,f″(0)>0 B: f(0)>1,f″(0)<0 C: f(0)<1,f″(0)>0 D: f(0)<1,f″(0)<0

    • 4

      若f(x)=f(x)=1x(x<0)x-x2(x≥0),则f(f(2))=______.