关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入! 2021-04-14 【单选题】一个次数大于0的整系数多项式f(x)在Q上可约,那么f(x)可以分解成两个次数比f(x)次数低的什么多项式的乘积。 A. 整系数多项式 B. 本原多项式 C. 复数多项式 D. 无理数多项式 【单选题】一个次数大于0的整系数多项式f(x)在Q上可约,那么f(x)可以分解成两个次数比f(x)次数低的什么多项式的乘积。A. 整系数多项式 B. 本原多项式 C. 复数多项式 D. 无理数多项式 答案: 查看 举一反三 一个次数大于0的整系数多项式f(x)在Q上可约,那么f(x)可以分解成两个次数比f(x)次数低的什么多项式的乘积。 一个次数大于0的本原多项式g(x)在Q上可约,那么g(x)可以分解成两个次数比g(x)次数低的本原多项式的乘积。 f(x)(系数为an…a0)是一个次数n>0的本原多项式,q/p是有理根,那么可以得到f(x)=(px-q)g(x)成立,那么g(x)是什么多项式? f(x)在F[x]中可约的,且次数大于0,那么f(x)可以分解为多少个不可约多项式的乘积 p???x)在F[x]上不可约,则p(x)可以分解成两个次数比p(x)小的多项式的乘积。