• 2021-04-14
    x=asin2t,y=bsintcost,z=ccos2t在点t=的法平面方程为...7fa4e7cc6ab8a2.png"]
  • 2ax-by=0

    内容

    • 0

      一振幅为A、周期为T、波长为λ平面简谐波沿X负向传播,在X=(1/2)λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y=Acos(2πt/T-2πx/λ-1/2π) B: y=Acos(2πt/T+2πx/λ+1/2π) C: y=Acos(2πt/T+2πx/λ-1/2π) D: y=Acos(2πt/T-2πx/λ+1/2π)

    • 1

      求曲线 $x=2t,y=t^2,z=4t^4$ 在对应于 $t_0=1$ 点的切线方程和法平面方程.解:曲线上对应于$t_0=1$ 的点的坐标为______ ,该点处切向量 $\vec T=$______ ,则切线方程为:______ ,法平面方程为:______ .

    • 2

      一振幅为A、周期为T、波长为λ平面简谐波沿x负向传播,在x=λ处,t=T/4时振动相位为π,则此平面简谐波的波动方程为:() A: y.=Acos(2πt/T-2πx/λ-π) B: y=Acos(2πt/T+2πx/λ+π) C: y=Acos(2πt/T+2πx/λ-π) D: y=Acos(2πt/T-2πx/λ+π)

    • 3

      设\(z = {e^{x - 2y}}\),而\(x = \sin t\),\(y = {t^3}\),则全导数\( { { dz} \over {dt}} = \) A: \({e^{\sin t - {t^3}}}(\cos t - 6{t^2})\) B: \({e^{\sin t - 2{t^3}}}(\sin t - 6{t^2})\) C: \({e^{\cos t - 2{t^3}}}(\cos t - 6{t^2})\) D: \({e^{\sin t - 2{t^3}}}(\cos t - 6{t^2})\)

    • 4

      一空间曲线由参数方程x=t y=sin(2t) , -3<t<3z=cos(3t*t)表示,绘制这段曲线可以由下列哪组语句完成。 A: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z, t) B: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t*t);plot3(x, y, z) C: t=-3:0.1:3;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) D: t=-3:0.1:3;x=t;y=sin(2*t);z=cos(3*t.*t);plot3(x, y, z) E: x=-3:0.1:3;y=sin(2*x);z=cos(3*x.*x);plot3(x, y, z)