F[x]中,x^2-3x1除3x^34x^2-5x6的余式为
举一反三
- 设$f(x)$是三次首一多项式。若$x-1$除$f(x)$余 $1$,$x-2$除$f(x)$余 $2$,$x-3$除$f(x)$余 $3$,则 $f(x)$ =( )。 A: $x^{3}-6x^{2}+12x-6$; B: $x^{3}-6x^{2}+11x-6$; C: $x^{3}-5x^{2}+12x-6$; D: $x^{3}-6x^{2}+12x-5$.
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
- 方程y'(x) = x^2 - 3x + 2 的平衡点是 A: x = 1, x = 2 B: x = 3, x = 2 C: x = 3, x = 1 D: x = 3, x = 0
- 采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]