【单选题】在考虑定量税(T0)、比例所得税(t)和转移支付(TR)的条件下,三部门经济中的可支配收入为()
A. T0-TR+(1-t)Y B. -T0-TR+(1-t)Y C. T0-TR-(1-t)Y D. -T0+TR+(1-t)Y
A. T0-TR+(1-t)Y B. -T0-TR+(1-t)Y C. T0-TR-(1-t)Y D. -T0+TR+(1-t)Y
举一反三
- 如果希望定时器的时钟脉冲是单片机机器周期时钟信号,则就使:() A: C/T’=1 B: C/T’=0 C: TR=0 D: TR=1
- 如果希望定时器的时钟脉冲是由p3.4/P3.5引脚输入,则就使:() A: C/T’=1 B: C/T’=0 C: TR=0 D: TR=1
- 下列Matlab代码,能求解微分方程 y'(t) = 2*t , y(0) = 1的是( ) A: tspan = [0 5];<br> y0 = 0;<br> [t,y] = ode45(@(t,y) 2*t, tspan, y0); B: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t, tspan, y0); C: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*y, tspan, y0); D: tspan = [0 5];<br>y0 = 1;<br>[t,y] = ode45(@(t,y) 2*t*y, tspan, y0);
- \(y''+4y'+3y=e^{-t}\),\(y(0)=y'(0)=1\)的解为\(y(t)=\frac{1}{4}[(7+2t)e^{-t}-3e^{-3t}]\) ( )
- 如下命令中不能实现如下微分方程组[img=327x203]17e443a5d83ce02.png[/img],在初值条件[img=172x112]17e443a5e2ead01.png[/img]下的特解求解的是: A: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 't') B: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1, y(0)=0', 't') C: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0') D: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 'x')