【单选题】若集合P={x|x=2n,n∈N},Q={x|x=4n,n∈N},则P∪Q=
A. {x|x=4n,n∈N} B. {x|x=2n,n∈N} C. {x|x=n,n∈N} D. {x|x=4n,n∈Z}
A. {x|x=4n,n∈N} B. {x|x=2n,n∈N} C. {x|x=n,n∈N} D. {x|x=4n,n∈Z}
举一反三
- 已知()y()=()ln()x(),则()y()(()n())()=()。A.()(()−()1())()n()n()!()x()−()n()"()role="presentation">()(()−()1())()n()n()!()x()−()n();()B.()(()−()1())()n()(()n()−()1())()!()x()−()2()n()"()role="presentation">()(()−()1())()n()(()n()−()1())()!()x()−()2()n();()C.()(()−()1())()n()−()1()(()n()−()1())()!()x()n()"()role="presentation">()(()−()1())()n()−()1()(()n()−()1())()!()x()-n();()D.()(()−()1())()n()−()1()n()!()x()−()n()+()1()"()role="presentation">()(()−()1())()n()−()1()n()!()x()−()n()+()1().
- 计算下列序列的N点DFT。(1)x(n)=1(2)x(n)=δ(n)(3)x(n)=δ(n一n0),0<n0<N(4)x(n)=Rm(n),0<m<N(7)x(n)=ejω0nRN(n)(8)x(n)=sin(ω0n)RN(n)(9)x(n)=cos(ω0n)RN(n)(10)x(n)=nRN(n)
- 下列序列中()为共轭对称序列。 A: x(n)=x(-n) B: x(n)=x(n) C: x(n)=-x(-n) D: x(n)=-x(n)
- 用δ(n)及其延迟项表示序列x(n)={2, -3 , 4,1},结果为( ) A: x(n)=2δ(n)-3δ(n-1)+4δ(n-2)+δ(n-3 B: x(n)=2δ(n-1)-3δ(n)+4δ(n+1)+δ(n+2) C: x(n)=2δ(n+1)-3δ(n)+4δ(n-1)+δ(n-2) D: x(n)=2δ(n)-3δ(n+1)+4δ(n+2)+δ(n+3)
- 集合A={X∈NㅣX<;2},集合B={X∈NㅣX<;5}则A∩B=() A: {X∈NㅣX<;2} B: {X∈NㅣX<;5} C: {X<;2} D: {X<;5}