【简答题】已知平面流动的速度场为ux=-cy/(x^2+y^2),ux=cx/(x^2+y^2),其中c为常数。试求流线方程,并画出若干条流线
举一反三
- 求解方程组[img=218x63]1803072f0e0e849.png[/img]接近 (2,2) 的解 A: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
- 求解方程组[img=218x63]1803072e5daced1.png[/img]接近 (2,2) 的解 A: NSolve[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] B: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,2},{y,2}] C: FindRoot[{x^2+y^2==5Sqrt[x^2+y^2]-4x,y==x^2},{x,y},{2,2}] D: FindRoots[{x^2+y^2=5Sqrt[x^2+y^2]-4x,y=x^2},{x,2},{y,2}]
- 已知速度场u=x;v=-y (y≥0),则该流动的流线方程、迹线方程分别为 (第二章) A: xy=C 和 x^2+y^2=C ; B: xy=C 和 x^2-y^2=C ; C: xy=C 和 xy=C ; D: xy=C 和x/y=C ;
- 在环形区域[img=136x26]18030733be53638.png[/img]上, 绘制函数图形[img=129x27]18030733c6c9cd6.png[/img] A: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},Exclusions→Function[{x,y},0.5<x^2+y^2<2]] B: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},RegionFunction→Function[{x,y},0.5<x^2+y^2<2]] C: Plot3D[x^2+y^2,{x,-2,2},{y,-2,2},RegionFunction→Function[{x,y},2>x^2+y^2>0.5]] D: Plot3D[x^2+y^2,{y,-2,2},{x,-2,2},Exclusions→Function[{x,y},0.5<x^2+y^2<2]]
- 设随机变量(x,y)服从二维正态分布,概率密度为f(x,y)=(1/2pi)*exp[-1/2*(x^2+y^2)],求E(x^2+y^2)