题1:设f(x)=limx^n/(2+x^2n),则f(x)的间断点是:(注:题中是n→∞的极限,x^n为x的n次方,x^2n为x的2n次方)
1.可变形为1/[2/(x^n)+x^n]间断点为正负1这里可以通过求在正负1处的左右极限及函数值来得出在+1的左极限为0,右极限为0,在1处值为1/3在-1处的值看n的奇偶性,所以不存在、2.我怎么感觉C,D都可以产生间断点……
举一反三
- 已知函数f(x)具有任意阶导数,且f'(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是______. A: n![f(x)]n-1 B: n[f(x)]n+1 C: [f(x)]2n D: n![f(x)]2n
- \( \sin x \)的麦克劳林公式为( ). A: \( \sin x = x - { { {x^3}} \over {3!}} + { { {x^5}} \over {5!}} - \cdots + {( - 1)^n} { { {x^{2n + 1}}} \over {\left( {2n + 1} \right)!}} + o\left( { { x^{2n + 2}}} \right) \) B: \( \sin x = 1 - { { {x^2}} \over {2!}} + { { {x^4}} \over {4!}} - { { {x^6}} \over {6!}} + \cdots + {( - 1)^n} { { {x^{2n}}} \over {\left( {2n} \right)!}} + o\left( { { x^{2n + 1}}} \right) \) C: \( \sin x = 1 + x + { { {x^2}} \over 2} + \cdots + { { {x^n}} \over {n!}} + o\left( { { x^n}} \right) \)
- 将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)
- 已知n是正整数,x的2n次方=16,求{16分之1x的3n次方}2次方-16分之1{x的2次方}的2n次方
- 下面系统是线性的有()。 A: y(n)=g(n)x(n) B: y(n)=[x(n)]2(2为幂次方) C: y(n)=x(-n) D: y(n)=x(n2) (2为n幂次方)
内容
- 0
【单选题】若集合P={x|x=2n,n∈N},Q={x|x=4n,n∈N},则P∪Q= A. {x|x=4n,n∈N} B. {x|x=2n,n∈N} C. {x|x=n,n∈N} D. {x|x=4n,n∈Z}
- 1
11、已知x^n=5y^n=2求(x^2y)^2n的值。
- 2
设x(n)是长度为2N的有限长实序列,X(k)为x(n)的2N点DFT。(1)试设计用一次N点FFT完成计算X(k)的高效算法。(2)若已知X(k),试设计用一次N点IFFT实现求x(n)的2N点IDFT运算。
- 3
设f(x)=xx+1,定义f1(x)=f(x),f2(x)=f1(f(x)),f3(x)=f2(f(x)),…,fn(x)=fn-1(f(x)),(n≥2,n∈N)则f100(x)=1的解为x=______.
- 4
下列系统(其中y(n)为输出序列,x(n)为输入序列)中()属于移不变系统。 A: y(n)=x3(n)( x的3次幂) B: y(n)=x(n)x(n+2) C: y(n)=x(n)+2 D: y(n)=x(2n)