举一反三
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是交换整环,[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的分式域,[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一元多项式环,证 明[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上的一元多项式环且[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]与[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]有相同的分式域。
- 假定 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是模 7 的剩余类环,在 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 里把乘积[tex=13.5x1.571]1mozSZPmTDk0iZAfoGbSXnOelqTN0/dkYhjcU65OdFp1ann7b44m9v7d3WfJanWB51HbTxs3hwJeYJ5JgYjybafXVKfcHeBaMrNZWSFEF0c=[/tex]计算出来.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是交换整环,但不是域,证明[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]不是主理想整环。
- 证明: [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上的一元多项式环 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]能与它的某个真子环同构.
- 环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的多项式环 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的子集:[tex=10.5x1.571]10UHV/DxEVBYhrfOmYLMS/oE/7Ks8EIAktoJxAhOqd2dYk22kEm/lN7skD8L3zcMUYfjrLlc3rQfUFjrIqEFwQ==[/tex],[br][/br][tex=9.857x1.357]+7kW6DXtRWsru/sxuJbBpOnS88OrzkAIgJL52jHSmXcJQsTk2MdukESGAPPAhjEy[/tex],则 [tex=2.214x1.214]kAVRtrf9vqZPBf9ZKLTXYg==[/tex] 均是 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 的子环。
内容
- 0
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是整环, 证明: [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 也是整环, 且若[tex=8.714x1.357]oVr3Dwq4mCJpVeSnaB2gBav6gzXX+4IxyzkrLDKnpT4ofCdHisdPAVuC8sqanZWC[/tex], 则[tex=16.5x1.357]79Wd/JsaQKi3RBB3vwr83y9aNKwSst378OWInw7DpxyGmQvFvzv47TsWEB5CANufqeVJfC5Y+JfjLUHVVTF8QBv5sk3NVPESDFkfmPLVHWl2szY4MP7dPrINkk8Lxn2x[/tex]
- 1
假定 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是模 16 的剩余类环. [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]的多项式 [tex=1.0x1.214]M3ejp0abpaUbronXuku+CQ==[/tex]在 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]里有多少个根?
- 2
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是整环, 证明: [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]中的可逆元 (即存在逆元的元素) 恰是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中的可逆元.
- 3
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是交换整环,[tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex]是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上的一元多项式环,[tex=3.857x1.357]08KAQS07lnW3KbEsVzyEgw==[/tex],证明[tex=9.643x1.357]79Wd/JsaQKi3RBB3vwr83w8M9eAgpYDtrTS0yKcWxYhjhe8CvfLviGuH10wMM8R3+/XGiGHeT44WaH8Se0A3pUmLGBi1p5WHBtb8TSD7YH8=[/tex],试问对一般的交换幺环,上式是否成立?
- 4
证明 [tex=0.786x1.0]59uVln8a2zRyv0n5hgPyQg==[/tex]的一元多项式环 [tex=1.929x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 能与它的一个真子环同构.