举一反三
- 设X,Y为两个随机变量,且P{X ³0,Y ³ 0} = 3/7 , P{X ³ 0} = P{ Y ³ 0} = 4/7 ,则P{max(X, Y) ³ 0} = ( ). A: 1/7 B: 3/7 C: 4/7 D: 5/7
- 采用基2时间抽取FFT算法流图计算8点序列的DFT,第一级的数据顺序为 A: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] B: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] C: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7] D: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7]
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
内容
- 0
已知X的分布列为P{X=-1}=1/2,P{X=0}=1/3,P{X=1}=1/6,则E(X)的值为_______。 A: 7/3 B: 0 C: -1/3 D: 1
- 1
采用基2频率抽取FFT算法计算点序列的DFT,以下()流图是对的。 A: x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7] B: x[0],x[2],x[4],x[6],x[1],x[3],x[5],x[7] C: x[0],x[2],x[1],x[3],x[4],x[6],x[5],x[7] D: x[0],x[4],x[2],x[6],x[1],x[5],x[3],x[7]
- 2
设函数 [tex=3.214x1.357]QP+eOmHJqKCByj1gWc95fw==[/tex] 在单位圆 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内解析,并且满足条件 [tex=9.571x1.357]c8f8pYOWcLRchWEduA0fr6P3iqy5eGywOX8jdwKtHHe2TcTMs0ujGegNHVSj8rzn[/tex], 试证明在 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内恒有[p=align:center][tex=13.5x2.714]JiSSM7lWuZhUfK/0U2SAH06k8wS3B76ksePXghCEk0zYGsVGP0UbmEc8leKhgwhyO15VkcpYO+JSr2RP2uDN4+OyiN8881A+Dsitm3yVbK8=[/tex]
- 3
【单选题】rev(c(1,3,2,6,7,8,8,1,1,0))的运行结果 ? A. [1] 0 1 1 1 2 3 6 7 8 8 B. [1] 1 3 2 6 7 8 8 1 1 0 C. [1] 0 1 1 8 8 7 6 2 3 1 D. [1] 8 8 7 6 3 2 1 1 1 0
- 4
设 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在单位圆 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内解析,如果原点是函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 的 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 级零点,并且 [tex=7.786x1.357]xo1a9707TLvKJs440R8jQDpeL1pvBylUMxt0PbY2Z2E=[/tex], 证明在 [tex=2.857x1.357]W2UvKR01GUJgbq0KdXYJYQ==[/tex] 内恒有 [tex=5.714x1.357]ZhxLb4tGirvvU9aDFRRDeW4UQoF9lxRb61JytoKygDw=[/tex] Schwarz 引理 ) .