• 2022-06-01
    求下列各函数在 [tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex] 处的泰勒展式:(1)[tex=2.929x1.286]T0JXuSHYnRvtS0XSPYRGQw==[/tex];
  • 解:(1)因 [tex=2.929x1.286]T0JXuSHYnRvtS0XSPYRGQw==[/tex] 在整个复平面上解析,故收敛半径为 [tex=3.786x1.286]DFLjy6u2JPuCSoOdV3R1ow==[/tex],又因[tex=3.929x1.286]gZVTJseZFu63927UujQPbg==[/tex][tex=7.857x2.0]mh87tE7868q+P/3lLb68tBwi0pszRcudh7wCK9iQOLlS/s4Rqd3jwmeWHr6oH6Up[/tex][tex=7.643x2.357]9gShQQInvZxlHfW2PWRPT1irvqD0cXtd0UQQskojnSG/GsjWXZJ7GZSffk1gan4T[/tex],[tex=28.571x10.786]a0s3MH7cLIdmiBRR0YN069FgSly7fzz4tyrWyQdhgqkI1L7FNrDTNsjDYWdlsk7nQzWPESwCeD8kuldaHaFlwIE76YSquKTGwes9dWyK6GR3ufEkQjfWFNYXRrkz2iQsK1Q5SXkuK33JTGpwMZ4Mk9Q10qE24ILon3qanbBRXK/pyG3MAS6jJRWx1X/y+OLAPsyFTWFpFY0am9jSZ0luWBWXCawGAVw1vozdYUlUCcxSwi4BbtLMX7/Ay6USL8BD4zb+5ZBcFIRS6vnufyp4H0Dl6AezhxVeK30AlFuZdNAfz4g9Xlfey2FRjst3cuFNHlOgA4lJumQTJhJ0WkxtklQ/+2qAxVCKGHtHwW/3m6gtY1fl4M+ADPqQEZe5BnqvKME3px0H4DLtlxPjdMuCa8Slul0rSpaGqr6NSyBtaCtjddd16pNGvwzlL6aeuqzU3lKvU8EJaOqbC5YD6n8Heh+CZULwkoMQETl1/73MgYlQpf4H7d0LaphoSRz39id+3ENu2fovq9nNbxw847eFQXZkZVt8Yr1DhQEEr64944zIXlPVAuR1XyOg1r6aawM9UOrWPO6TeOxjpiA3LntQAQ3fZOhkgT0B+zfOAwjqU99FLOZcApQQiqrMdeV5WhAq[/tex][tex=4.786x1.286]62yq58Vdf9bso/hqumtGzknu6ILSvxylk9hjJP8Uiq8=[/tex]

    内容

    • 0

      求函数[tex=1.929x1.0]NbGe/loIPN1B97WWbS3Iqg==[/tex]在指定点[tex=2.143x1.214]ATB4kvGtSubBbAPWkP6VUg==[/tex]处的泰勒展式.

    • 1

      求下列函数在指定点[tex=0.857x1.0]KInWOYOIU+u9wjpJut/pOQ==[/tex] 处的泰勒展式.[tex=4.286x1.214]5o9S+2ZHV+mDr/Z7cWB0/pqNXghxYA/5WMUxghxAgao=[/tex];

    • 2

      设函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以[tex=1.143x1.286]MG2u3jYKRRGfnjGR+VhW1w==[/tex]为周期的周期函数,且在闭区间[tex=2.929x1.286]p/nm9lPsH6qDeGQtAaG9hw==[/tex]上有[tex=2.929x1.286]bxDJBD1eh7UoKfKs5gMhsA==[/tex][tex=10.429x2.786]fnpmC2J6JmQBLyo5NmGAz2EeajXF0Gk0QwUQMg6nk8g5fLs6xfMJCmrceJZQZuL0xvhXAF/UHpx0umkrPIzSla0PmBZm4EKuKtWtAQn8Et2uxSDa6qoepPfl1TmBemS+ghbpmRQqk6k+XEEkPBKfDQ==[/tex],则[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的傅立叶级数在[tex=2.5x1.286]mvDR8RW1sE+KGnU80vSejQ==[/tex]处收敛于 未知类型:{'options': ['[tex=2.286x1.286]nV3BxWPC0jaVqBc4ZkxdKg==[/tex]', '[tex=2.286x1.286]MRvFC+Ev1UyJartnhIZsAg==[/tex]', '1', '0'], 'type': 102}

    • 3

      设平面垂直于平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex],并通过从点(1,-1,1)到直线[tex=7.786x2.786]7EJHVCtO2IWq3KpdB+jQsu2TzFWJjsntDAyagYRwefkWw9jfgt9jfZ6m21aVjFCBB74g/x/pgO01mkmjdtcLYA==[/tex]的垂线,求此平面的方程。

    • 4

      一均匀物体(密度[tex=0.571x1.286]mGHbklYlBVNXKEGAelwITA==[/tex]为常量)占有的闭区域[tex=0.714x1.286]1YkIdjxXLHdjdjLEO+eusQ==[/tex]由曲面[tex=4.929x1.286]kli38aHAQ7FLX6I0jnn6eSe2KvDxW3mLNRDkWgP08CY=[/tex]和平面[tex=2.286x1.286]JLs9PeQldj+slOTItz+PvA==[/tex],[tex=2.929x1.286]OY/AB0eyI6cw3tZDK+mKbA==[/tex],[tex=2.929x1.286]kX8CgLjIxiSnig9+bpuVog==[/tex]所围成,(1)求物体的重心;(2)求物体关于[tex=0.5x1.286]asctJDWpGaq/ETe64ANZ1Q==[/tex]轴的转动惯量。