在仿射坐标系下,直线方程是一次的。
举一反三
- 2. 在射影坐标系(ABC|D)下,直线AD的齐次坐标方程为 未知类型:{'options': ['', '', '', ''], 'type': 102}
- 笛氏坐标系和仿射坐标系的关系是() A: 同样 B: 笛氏坐标系是仿射坐标系的推广 C: 笛氏坐标系是仿射坐标系的特殊情况 D: 没有关系
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求直线[tex=5.857x1.214]1pecbxZDB1xu/0H6ijHM3hqa9/cRwiBE3Vz+PmDUQBA=[/tex]在坐标系[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]中的方程。
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求直线[tex=6.857x1.357]QJ8RvVa/Cs1tOntKquT1sVvrk/4lEkU87uZZxs8QAaAs3BqZP6C8rmlnOGLzaZbX[/tex]在坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]中的方程。
- 在给定的仿射坐标系中,求下列直线的方程:过点[tex=4.0x1.357]62pkV5WIZw/HUtCCd9EY2Q==[/tex],与三根坐标轴夹角相等。