举一反三
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求直线[tex=5.857x1.214]1pecbxZDB1xu/0H6ijHM3hqa9/cRwiBE3Vz+PmDUQBA=[/tex]在坐标系[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]中的方程。
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的原点的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标,[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的基向量[tex=1.714x1.429]lInMIm9HkH5NrzWlNM9SJe/uwtRZgezWevkZvDX57P8=[/tex]的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标;求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的原点的[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标,[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的基向量[tex=1.714x1.429]lInMIm9HkH5NrzWlNM9SJe/uwtRZgezWevkZvDX57P8=[/tex]的[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标。
- 设[tex=4.5x1.0]EEDa8i1sJWKtb2FOTjsTew==[/tex]为正六边形,取仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]为[tex=5.286x1.929]zPGWKKbIhWuZABYCdoRdsB639BODwmisJi4axvh4jjF1YmvEAYTvRQ9Zk8HjX+sG/hSsjYjbjh4y4hRdNZ8LjA==[/tex],[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]为[tex=5.214x1.929]IrmWxoUIx1//yaEfHnSWn5rAkN7HQpWba14LTXWJSyehnYrXdmc3TetG8q5kaqqM7sC1fbiQ+1RArajE6vi3Hg==[/tex],求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式和向量变换公式,求[tex=3.357x1.857]i7vzbtmrNnPXa6DLYXijkJTVICdeWSf/TzJMfEShRYTZK9O4LGvxYZnknR8FaCcx[/tex]的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标和[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标。
- 在右手直角坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]中,设两直线[tex=0.857x1.214]A3UMBK5Fhc/2fg/uf1O7gA==[/tex][tex=9.571x1.214]/b8gGI1O5mRosQgeDGb7kvr6j1hilxu+sVVfgkhzCpQ=[/tex]互相垂直,取[tex=1.786x1.214]/Om/i0rEH84v5lSAslsDtg==[/tex]为右手直角坐标系[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的[tex=3.357x1.357]dLKEsBQsbYT+daI3ZIAESBxYnKAkpHm8XQdRndx+CMA=[/tex]轴,试求[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]到[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的点的坐标变换公式。
- 如果坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]和[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]都是右手直角坐标系,且[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标是[tex=3.214x1.357]OxiXbOj5ZC7UpmR5YlTpmQ==[/tex]到[tex=0.714x1.429]8fVOIP3O4lEuvAGxrQigAg==[/tex]的转角是[tex=0.857x2.143]WYqusP/xcIP4aFy4ILrfzA==[/tex],求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]的[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标以及直线[tex=3.714x1.214]qMjgWtw+H43j0Doz8MMSew==[/tex]在[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]中的方程。
内容
- 0
设[tex=3.0x1.0]nSpT6utOTqPkb5y/eotwqQ==[/tex]为四面体,[tex=3.071x1.214]f8f1Lc81Yx5pkwpSBihLlg==[/tex]依次是[tex=3.143x1.214]pQSzstHbMNQUlNb8ezn/Ag==[/tex]的三边[tex=5.357x1.214]XfpkBE2eHPsZJo4raIH/hQ==[/tex]的中点,取[tex=15.214x1.929]g/NP1JVvt9PpXkUJ72i4U5sxeUH1dJzcGznHJtJB1M0vB4oeVGFgombFOiIqD4Qop5RW51psWeMEXLL/PoHidlntGDkQubXOnI8fw/CefUqUEb5NKZpyD0kbHJCrX/MnMTM/llSEM48hZp9CChnGxkvLD1JJe0tqYkBIW5mm7eI7f5t4VlSdYmgde+AnR5GsidkNkBZkiQpyVcx3+Na0oI7jisY+PD0qZbEYTZHJDxA=[/tex]。求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标交换公式和向量的坐标变换公式,再求[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]到[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的点的坐标变换公式和向量的坐标变换公式。
- 1
设点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]分线段[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]成5:2,点[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的坐标为[tex=3.214x1.357]T5eFhnPu0rsIoQnWYaiYKg==[/tex],点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]坐标为[tex=3.214x1.357]zTAzSgXh1TiduADsLhWXzg==[/tex],求点[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的坐标。
- 2
6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 3
设新旧坐标系都是右手直角坐标系,坐标变换公式为:[tex=5.929x3.357]fnpmC2J6JmQBLyo5NmGAz8pUnmkU2EGZSNOtb/NH7tQHzrUeb954wR4OVcXfPre+XQOT7ec3ekLvVNUbSPZyX06GuB6pPTjJ0CNTxIxziXc=[/tex],其中[tex=5.214x1.429]XywScx2ogn6wmH1+mAl1WG+2O08W8moNGGIkSqshS6YQpj+EsjGFLIlGmMDjowT0[/tex]分别表示同一个点的旧坐标与新坐标,求新坐标系的原点的旧坐标,并且求坐标轴旋转的角[tex=0.5x1.0]YCaAGj51cMYuHuypE42enQ==[/tex]。
- 4
在平面上,设坐标系田的[tex=0.857x1.143]uZ7CytEH9YWCH592BojXyQ==[/tex]轴[tex=0.786x1.357]aWqhlS7dEw/6SaOkiRrfqw==[/tex]轴在坐标系I中的方程是 [tex=12.071x1.214]dz1HTR/jdlr6S2J88oXAIfmvLebyNF9YNKZti7sYHjQ=[/tex] 并且 I 和 II 都是右手直角坐标系. 求:(1) I 到 II 的坐标变换公式;(2)直线[tex=3.643x1.214]zd8Ggph40oanwB9e+P6fhg==[/tex]在 II 中的方程;(3)直线 [tex=4.143x1.357]eskRMEMmV4X1jkzboXhG06VWxWbhHoSq/hP69H22dSI=[/tex] 在 I中的方程.